Skip to main content
Log in

The effects of irradiance, temperature, and desiccation on the photosynthesis of a brown alga, Sargassum muticum (Fucales), from a native distributional range in Japan

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We determined the effects of irradiance, temperature, and desiccation on the photosynthesis of a brown alga, Sargassum muticum (Fucales), from its native distributional range in Japan by using a pulse amplitude modulation (PAM)-chlorophyll fluorometer and optical dissolved oxygen sensors. Photosynthesis–irradiance curves at three temperatures (8, 20, and 28°C) showed that the maximum net photosynthetic rates (NPmax) and saturation irradiance were highest at 28°C. Gross photosynthesis determined at 8–36°C (every four increments) and 300 μmol photons m−2 s−1 showed that the maximum gross photosynthetic rate (GPmax) occurred at 19.5°C (\( {T}_{\mathrm{opt}}^{\mathrm{GP}} \)), which is consistent with the seawater temperature at its peaked abundance in Japan. The maximum quantum yields (Fv/Fm) of photosystem II (PSII) during the 72-h temperature exposures were above 0.60 at 8–28°C but dropped at higher temperatures. Continuous exposure (12 h) to irradiance of 200 (low) and 1000 (high) μmol photons m−2 s−1 at three temperatures showed remarkable decline in the effective quantum yields (ΔF/Fm') of PSII under high irradiance at 8°C only; the Fv/Fm measured after 12-h dark acclimation also did not recover to initial values, signifying its sensitivity to photoinhibition at 8°C. Furthermore, the alga exhibited tolerance to 2 h of desiccation with 80% of water loss from the thallus, and ΔF/Fm' recovered after 24 h of rehydration in seawater, suggesting potential of photosynthetic recovery of this alga at such low hydration threshold. In conclusion, the adaptation of S. muticum to relatively high irradiance, to broad range of temperature (8–28°C), and to desiccation explains its potentially high invasive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott IA, Hollenberg GJ (1976) Marine algae of California. Stanford University Press, Stanford

    Google Scholar 

  • Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200:189–192

    Article  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Andrew NL, Viejo RM (1998) Ecological limits to the invasion of Sargassum muticum in northern Spain. Aquat Bot 60:251–263

    Article  Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9:347–349

    Google Scholar 

  • Beer S, Biörk M, Beardall J (2014) Photosynthesis in the marine environment. Wiley-Blackwell, Ames

  • Bellasio C, Burgess SJ, Griffiths H, Hibberd JM (2014) A high throughput gas exchange screen for determining rates of photorespiration or regulation of C4 activity. J Exp Bot 65:3769–3779

    Article  PubMed  PubMed Central  Google Scholar 

  • Boo SM, Ko YD (2012) Marine plants from Korea. Marine and Extreme Genome Research Centre Program, Seoul (in Korean)

    Google Scholar 

  • Britton-Simmons KH (2004) Direct and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washington State, USA. Mar Ecol Prog Ser 277:61–78

    Article  Google Scholar 

  • Bürkner PC (2017) brms: an R package for Bayesian multilevel models using Stan. J Stat Soft 80 https://doi.org/10.18637/jss.v080.i01

  • Bürkner PC (2018) Advanced Bayesian multilevel modeling with the R package brms. R J 10:395–411

    Article  Google Scholar 

  • Contreras-Porcia L, Thomas D, Flores V, Correa JA (2011) Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta). J Exp Bot 62:1815–1829

    Article  CAS  PubMed  Google Scholar 

  • Coppejans E, Rappe G, Podoor N, Asperges M (1980) Sargassum muticum (Yendo) Fensholt ook langs de Belgische kust Aangespoeld. Dumortiera 16:7–13

    Google Scholar 

  • Critchley AT (1983) Sargassum muticum: a taxonomic history including world-wide and western pacific distributions. J Mar Biol Assoc UK 63:617–625

    Article  Google Scholar 

  • Critchley AT, Farnham WF, Yoshida T, Norton TA (1990) A bibliography of the invasive alga Sargassum muticum (Yendo) Fensholt (Fucales, Sargassaceae). Bot Mar 33:551–562

    Article  Google Scholar 

  • Curiel D, Bellemo G, Marzocchi M, Scattolin M, Parisi G (1999) Distribution of introduced Japanese macroalgae Undaria pinnatifida, Sargassum muticum (Phaeophyta) and Antithamnion pectinatum (Rhodophyta) in the Lagoon of Venice. Hydrobiologia 385:17–22

    Article  Google Scholar 

  • Davison IR, Peason GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Deysher L, Norton TA (1982) Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56:179–195

    Article  Google Scholar 

  • Dring MJ, Brown FA (1982) Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar Ecol Prog Ser 8:301–308

    Article  Google Scholar 

  • Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed Biology. Springer, Berlin, pp 47–66

    Chapter  Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618

    Article  Google Scholar 

  • Endo H, Nishigaki T, Yamamoto K, Takeno K (2019) Subtidal macroalgal succession and competition between the annual, Sargassum horneri, and the perennials, Sargassum patens and Sargassum piluliferum, on an artificial reef in Wakasa Bay, Japan. Fish Sci 85:61–69

    Article  CAS  Google Scholar 

  • Engelen A, Santos R (2009) Which demographic trails determine population growth in the invasive brown seaweed Sargassum muticum? J Ecol 97:675–684

    Article  Google Scholar 

  • Engelen A, Serebryakova A, Ang P, Britton-Simmons K, Mineur F, Pedersen MF, Arenas F, Fernández C, Steen H, Svenson R, Pavia H, Toth G, Viard F, Santos R (2015) Circumglobal invasion by the brown seaweed Sargassum muticum. Oceanogr Mar Biol Annu Rev 53:81–126

    Google Scholar 

  • Espinoza J (1990) The southern limit of Sargassum muticum (Yendo) Fensholt (Phaeophyta, Fucales) in the Mexican Pacific. Bot Mar 33:193–196

    Article  Google Scholar 

  • Farnham WF, Fletcher RL, Irvine LM (1973) Attached Sargassum muticum found in Britain. Nature 243:231–232

    Article  Google Scholar 

  • Fernández C (1999) Ecology of Sargassum muticum (Phaeophyta) on the north coast of Spain: IV. Sequence of colonization on a shore. Bot Mar 42:553–562

    Article  Google Scholar 

  • Fernández C (2020) Boom-bust of Sargassum muticum in northern Spain: 30 years of invasion. Eur J Phycol. https://doi.org/10.1080/09670262.2020.1715489

  • Flores-Molina MR, Thomas D, Lovazzanoc C, Núñez A, Zapata J, Kumar M, Correa JA, Contreras-Porcia L (2014) Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance. Aquat Bot 113:90–99

    Article  CAS  Google Scholar 

  • Gao K (1990) Seasonal variation of photosynthetic capacity in Sargassum horneri. Jap J Phycol 38:25–33

    Google Scholar 

  • Gao S, Wang G (2012) The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). J Exp Bot 63:4349–4358

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Shen S, Wang G, Niu J, Lin A, Pan G (2011) PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. Plant Cell Physiol 52:885–893

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Niu J, Chen W, Wang G, Xie X, Pan G, Gu W, Zhu D (2013) The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and re-hydration. Photosynth Res 116:45–54

    Article  CAS  PubMed  Google Scholar 

  • Gelman A (2004) Parameterization and Bayesian Modeling. J Am Stat Assoc 99:537–545

    Article  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Article  Google Scholar 

  • Hales JM, Fletcher RL (1989) Studies on the recently introduced brown alga Sargassum muticum (Yendo) Fensholt. IV. The effect of temperature, irradiance and salinity on germling growth. Bot Mar 32:167–176

    Article  Google Scholar 

  • Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light on marine macrophytes. In: Wiencke C, Bischof K (eds) Seaweed Biology. Springer, Berlin, pp 3–23

    Chapter  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photo inhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Front Plant Sci 4:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hwang EK, Dring MJ (2002) Quantitative photoperiodic control of erect thallus production in Sargassum muticum. Bot Mar 45:471–475

    Article  Google Scholar 

  • Japan Oceanographic Data Center (2020) Fixed station temperature data. JODC Data On-line Service System. URL https://jdoss1.jodc.go.jp/vpage/coastal.html (accessed on 13 June 2020)

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Ji Y, Gao K (2020) Effects of climate change factors on marine macroalgae: a review. Adv Mar Biol. https://doi.org/10.1016/bs.amb.2020.11.001

  • Ji Y, Tanaka J (2002) Effect of desiccation on the photosynthesis of seaweeds from the intertidal zone in Honshu, Japan. Phycol Res 50:145–153

    Article  Google Scholar 

  • Jones G, Farnham WF (1973) Japweed: new threat to British coasts. New Sci 60:394–395

    Google Scholar 

  • Karlsson J, Loo LO (1999) On the distribution and the continuous expansion of the Japanese seaweed Sargassum muticum in Sweden. Bot Mar 42:285–294

    Article  Google Scholar 

  • Kim KY, Garbary DJ (2007) Photosynthesis in Codium fragile (Chlorophyta) from a Nova Scotia estuary: responses to desiccation and hyposalinity. Mar Biol 151:99–107

    Article  Google Scholar 

  • Kokubu S, Nishihara GN, Watanabe Y, Tsuchiya Y, Amano Y, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of a native brown alga, Sargassum fusiforme (Fucales) from Kagoshima, Japan. Phycologia 54:235–247

    Article  Google Scholar 

  • Krueger-Hadfield SA, Kollars NM, Byers JE, Greig TW, Hammann M, Murray DC, Murren CJ, Strand AE, Terada R, Weinberger F, Sotka EE (2016) Invasion of novel habitats uncouples haplo-diplontic life cycles. Mol Ecol 25:3801–3816

    Article  PubMed  Google Scholar 

  • Kumagai NH, Molinos JG, Yamano H, Takao S, Fujii M, Yamanak Y (2018) Ocean currents and herbivory drive macroalgae-to coral community shift under climate warming. Proc Natl Acad Sci U S A 115:8990–8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Pang S, Gao S, Shan T (2013) Intraspecific genetic analysis, gamete release performance, and growth of Sargassum muticum (Fucales, Phaeophyta) from China. Chin J Oceanol Limnol 31:1268–1275

    Article  CAS  Google Scholar 

  • Maggi E, Benedetti-Cecchi L, Castelli A, Chatzinikolaou E, Crowe TP, Ghedini G, Kotta J, Lyons DA, Ravaglioli C, Rilov G, Rindi L, Bulleri F (2015) Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. Divers Distrib 21:1–12

    Article  Google Scholar 

  • Murase N, Kito H, Mizukami Y, Maegawa M (2000) Productivity of a Sargassum macrocarpum (Fucales, Phaeophyta) population in Fukawa Bay, Sea of Japan. Fish Sci 66:270–277

    Article  CAS  Google Scholar 

  • Norton TA (1976) Why is Sargassum muticum so invasive? Brit Phycol J 11:197–198

    Google Scholar 

  • Norton TA (1977) Ecological experiments with Sargassum muticum. J Mar Biol Assoc UK 57:33–43

    Article  Google Scholar 

  • Norton TA, Benson MR (1983) Ecological interactions between the brown seaweed Sargassum muticum and its associated fauna. Mar Biol 75:169–177

    Article  Google Scholar 

  • Ogawa H (1994) Effects of temperature and salinity on the rhizoid development of Sargassum muticum. Suisanzoshoku 42:25–31 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • R Development Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org (accessed on 10 June 2020)

  • Rico JM, Fernández C (1997) Ecology of Sargassum muticum on the North coast of Spain. II. Physiological differences between Sargassum muticum and Cystoseira nodicaulis. Bot Mar 40:405–410

    Article  Google Scholar 

  • Roleda MY (2009) Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photobiol Sci 8:1302–1312

    Article  CAS  Google Scholar 

  • Rueness J (1989) Sargassum muticum and other introduced Japanese macroalgae: biological pollution of European coasts. Mar Pollut Bull 20:173–176

    Article  Google Scholar 

  • Scagel RF (1956) Introduction of a Japanese alga, Sargassum muticum into the northeast Pacific. Fish Res Pap, Department of Fisheries, State of Washington 1:49–59

  • Setzer B, Link C (1971) The wanderings of Sargassum muticum and other relations. Stomatopod 2:5–6

    Google Scholar 

  • Sotka EE, Baumgardner AW, Bippus PM, Destombe C, Duermit EA, Endo H, Flanagan BA, Kamiya M, Lees LE, Murren CJ, Nakaoka M, Shainker SJ, Strand AE, Terada R, Valero M, Weinberger F, Krueger-Hadfield SA (2018) Combining niche shift and population genetic analyses predicts rapid phenotypic evolution during invasion. Evol Appl 11:781–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Stæhr PA, Pedersen MF, Thomsen MS, Wernberg T, Krause-Jensen D (2000) Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Mar Ecol Prog Ser 207:79–88

    Article  Google Scholar 

  • Stan Development Team (2020) Stan: A C++ Library for probability and sampling, Version 2.18.9. URL: http://mc-stan.org (accessed on 10 April 2020)

  • Steen H, Rueness J (2004) Comparison of survival and growth in germlings of six fucoid species (Fucales, Phaeophyceae) at two different temperature and nutrient levels. Sarsia 89:175–183

    Article  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M (2012) Warning off southwestern Japan linked to distributional shift of subtropical canopy-forming seaweeds. Ecol Evol 2:2854–2865

    Article  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada R, Vo TD, Nishihara GN, Matsumoto K, Kokubu S, Watanabe Y, Kawaguchi S (2016) The effect of PAR and temperature on the photosynthesis of two Vietnamese species of Sargassum, Sargassum mcclurei and Sargassum oligocystum, based on the field and laboratory measurements. Phycol Res 64:230–240

    Article  CAS  Google Scholar 

  • Terada R, Matsumoto K, Borlongan IA, Watanabe Y, Nishihara GN, Endo H, Shimada S (2018) The combined effects of PAR and temperature including the chilling-light stress on the photosynthesis of a temperate brown alga, Sargassum patens (Fucales), based on field and laboratory measurements. J Appl Phycol 30:1893–1904

    Article  CAS  Google Scholar 

  • Terada R, Nakashima Y, Borlongan IA, Shimabukuro H, Kozono J, Endo H, Shimada S, Nishihara GN (2020a) Photosynthetic activity including the thermal- and chilling-light sensitivities of a temperate Japanese brown alga Sargassum macrocarpum. Phycol Res 68:70–79

    Article  CAS  Google Scholar 

  • Terada R, Yuge T, Watanabe Y, Mine T, Morikawa T, Nishihara GN (2020b) Chronic effects of three different stressors, irradiance, temperature, and desiccation on the PSII photochemical efficiency in the heteromorphic life-history stages of cultivated Pyropia yezoensis f. narawaensis (Bangiales) from Japan. J Appl Phycol 32:3273–3284

    Article  CAS  Google Scholar 

  • Terada R, Abe M, Abe T, Aoki M, Dazai A, Endo H, Kamiya M, Kawai H, Kurashima A, Motomura T, Murase N, Sakanishi Y, Shimabukuro H (2021) Japan’s nationwide long-term monitoring survey of seaweed communities known as the “Monitoring Sites 1000”: ten-year overview and future perspectives. Phycol Res 69:12–30

    Article  CAS  Google Scholar 

  • Thornley JHM, Johnson IR (2000) Plant and crop modelling: a mathematical approach to plant and crop physiology. Blackburn Press, Caldwell

    Google Scholar 

  • Tseng CK, Lu B (2000) Flora algarum marinarum Sinicarum. Tomus III Phaeophyta, No. II Fucales. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Uchida T, Yoshikawa K, Arai A, Arai S (1991) Life-cycle and its control of Sargassum muticum (Phaeophyta) in batch cultures. Nippon Suisan Gakkaishi 57:2249–2253

    Article  Google Scholar 

  • Wang WJ, Wang FJ, Zhu JY, Sun XT, Yao CY, Xu P (2011) Freezing tolerance of Porphyra yezoensis (Bangiales, Rhodophyta) gametophyte assessed by chlorophyll fluorescence. J Appl Phycol 23:1017–1022

    Article  CAS  Google Scholar 

  • Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415

    Article  CAS  Google Scholar 

  • Watanabe Y, Yamada H, Mine Y, Kawamura Y, Nishihara GN, Terada R (2017) Chronological change and the potential of recovery on the photosynthetic efficiency of Pyropia yezoensis f. narawaensis (Bangiales) during the sporelings frozen storage treatment in the Japanese Nori cultivation. Phycol Res 65:265–271

    Article  CAS  Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291

    Article  PubMed  Google Scholar 

  • Wernberg T, Thomsena MS, Stæhra PA, Pedersena MF (2000) Comparative phenology of Sargassum muticum and Halidrys siliquosa (Phaeophyceae: Fucales) in Limfjorden, Denmark. Bot Mar 43:31–39

    Google Scholar 

  • Williams SL, Smith J (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359

    Article  Google Scholar 

  • Wiltens J, Schreiber U, Vidaver W (1978) Chlorophyll fluorescence induction: an indicator of photosynthetic activity in marine algae understanding desiccation. Can J Bot 56:2787–2794

    Article  CAS  Google Scholar 

  • Xu Z, Gao G, Xu J, Wu H (2017) Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences 14:671–681

    Article  CAS  Google Scholar 

  • Yendo K (1907) The Fucaceae of Japan. J Coll Sci Imp Univ Tokyo 21:1–174

    Google Scholar 

  • Yokohama Y (1973) A comparative study on photosynthesis temperature relationships and their seasonal changes in marine benthic algae. Int Rev Gesamten Hydrobiol 58:463–472

    Article  Google Scholar 

  • Yoshida T (1983) Japanese species of Sargassum subgenus Bactrophycus (Phaeophyta, Fucales). J Fac Sci Hokkaido Univ Ser 5 Bot 13:99–246

    Google Scholar 

  • Yoshida T (1998) Marine algae of Japan. Uchida Rokakuho, Tokyo (in Japanese)

    Google Scholar 

Download references

Acknowledgements

We thank Drs Hiroshi Kawai, Takeaki Hanyuda, and Masahiro Suzuki, Kobe University Research Center for Inland Seas, for their kind arrangements of the field survey in the present study. This research was part of the dissertation submitted by the first author in partial fulfillment of a Ph.D. degree. All authors have provided consent.

Funding

This research was supported in part by the Grant-in-Aid for Scientific Research (B; #16H02939, #20H03076) from the Japan Society for the Promotion of Science (JSPS). The field survey in the present study was conducted in collaboration with the nationwide long-term monitoring survey for seaweed communities (Monitoring Site 1000) of the Japanese Ministry of Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuta Terada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Borlongan, I.A., Nishihara, G.N. et al. The effects of irradiance, temperature, and desiccation on the photosynthesis of a brown alga, Sargassum muticum (Fucales), from a native distributional range in Japan. J Appl Phycol 33, 1777–1791 (2021). https://doi.org/10.1007/s10811-021-02425-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02425-z

Keywords

Navigation