Skip to main content
Log in

Enhanced polyhydroxybutyrate (PHB) accumulation in heterotrophically grown Arthrospira platensis under nitrogen deprivation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The non-heterocystous cyanobacterium Arthrospira platensis was investigated for the conditions under which high accumulation of polyhydroxybutyrate (PHB) occurred. Cells grown photoautotrophically under nitrogen-deprived conditions had high accumulation of PHB whose granules were clearly visualized using Nile-Red staining. A further increase of PHB was observed in cells grown photoheterotrophically for 3 days under nitrogen-deprived condition with 0.50%(w/v) acetate supplementation (−N +Act) showing the maximum PHB contents of 19.2 ± 0.5%(w/w DW). This was significantly higher than that in cells grown under the same condition but with either 0.1%(w/v) butyrate, or 0.75%(w/v) glucose, or 0.1%(w/v) propionate supplementation (P < 0.05). RT-PCR analysis revealed that photoheterotrophically grown cells under −N+ Act condition had a significant increase of phaB and phaC transcript levels (P < 0.05) compared with those supplemented with other organic carbons. The representative FTIR spectra of the extracted polymer from A. platensis showed prominent peaks at 1721 cm−1 and 1279 cm−1 for the carbonyl (C=O) stretching of the ester group and asymmetric C–O–C stretching vibration, respectively. This spectral pattern is comparable with that of the standard PHB spectra, thus confirming the chemical nature of the extract. The overall results demonstrated that the enhanced PHB accumulation in A. platensis was attributed to the increased expression of phaB and phaC responsible for increased PHB biosynthesis when cells were grown photoheterotrophically in nitrogen-deprived medium containing organic carbon compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ansari S, Fatma T (2016) Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization, and characterization. PLoS One 11:e0158168

    PubMed  PubMed Central  Google Scholar 

  • Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z (2018) Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol 268:773–786

    CAS  PubMed  Google Scholar 

  • Berwig KH, Baldasso C, Dettmer A (2016) Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresour Technol 218:31–37

    CAS  PubMed  Google Scholar 

  • Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512

    CAS  Google Scholar 

  • Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85

    Google Scholar 

  • Biradar GG, Shivasharana CT, Kaliwal BB (2018) Characterization of polyhydroxybutyrate (PHB) produced by novel bacterium Lysinibacillus sphaericus BBKGBS6 isolated from soil. J Polym Environ 26:1685–1701

    CAS  Google Scholar 

  • Cardeña R, Valdez-Vazquez I, Buitrón G (2017) Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate. Bioprocess Biosyst Eng 40:231–239

    PubMed  Google Scholar 

  • Carpine R, Olivieri G, Hellingwerf KJ, Pollio A, Marzocchella A (2020) Industrial production of poly-β-hydroxybutyrate from CO2: can cyanobacteria meet this challenge? Processes 8:323

    CAS  Google Scholar 

  • Catalán AI, Malan AK, Ferreira F, Gill PR, Batista S (2018) Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate production by a prpC mutant of Herbaspirillum seropedicae Z69. J Biotechnol 286:36–44

    PubMed  Google Scholar 

  • Chang Y, Wu Z, Bian L, Feng D, Leung DYC (2013) Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Appl Energ 102:427–431

    CAS  Google Scholar 

  • Chen J, Li W, Zhang Z-Z, Tan T-W, Li Z-J (2018) Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source. Microb Cell Factories 17:102

    Google Scholar 

  • Costa SS, Miranda AL, Andrade BB, Assis DDJ, Souza CO, de Morais MG, Costa JAV, Druzian JI (2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116:552–562

    CAS  PubMed  Google Scholar 

  • Costa SS, Miranda AL, de Morais MG, Costa JAV, Druzian JI (2019) Microalgae as source of polyhydroxyalkanoates (PHAs) - a review. Int J Biol Macromol 131:536–547

    CAS  PubMed  Google Scholar 

  • Cuellar-Bermudez SP, Kilimtzidi E, Devaere J, Goiris K, Gonzalez-Fernandez C, Wattiez R, Muylaert K (2020) Harvesting of Arthrospira platensis with helicoidal and straight trichomes using filtration and centrifugation. Sep Sci Technol 55:2381–2390

    CAS  Google Scholar 

  • da Silva CK, Costa JAV, de Morais MG (2018) Polyhydroxybutyrate (PHB) synthesis by Spirulina sp. LEB 18 using biopolymer extraction waste. Appl Biochem Biotechnol 185:822–833

    PubMed  Google Scholar 

  • De Philippis R, Sili C, Vincenzini M (1992) Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima. J Gen Microbiol 138:1623–1628

    Google Scholar 

  • Delrue F, Alaux E, Moudjaoui L, Gaignard C, Fleury G, Perilhou A, Richaud P, Petitjean M, Sassi J-F (2017) Optimization of Arthrospira platensis (Spirulina) growth: from laboratory scale to pilot scale. Fermentation 3:59

    Google Scholar 

  • Deschoenmaeker F, Facchini R, Cabrera Pino JC, Bayon-Vicente G, Sachdeva N, Flammang P, Wattiez R (2016) Nitrogen depletion in Arthrospira sp. PCC 8005, an ultrastructural point of view. J Struct Biol 196:385–393

    CAS  PubMed  Google Scholar 

  • Drosg B, Fritz I, Gattermayr F, Silvestrini L (2015) Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29:145–156

    CAS  Google Scholar 

  • Dutt V, Srivastava S (2018) Novel quantitative insights into carbon sources for synthesis of poly hydroxybutyrate in Synechocystis PCC 6803. Photosynth Res 136:303–314

    CAS  PubMed  Google Scholar 

  • Fradinho JC, Oehmen A, Reis MAM (2014) Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co-substrate uptake. J Biotechnol 185:19–27

    CAS  PubMed  Google Scholar 

  • Getachew A, Woldesenbet F (2016) Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res Notes 9:1–9

    Google Scholar 

  • Griffiths MJ, Garcin C, van Hille RP, Harrison STL (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods 85:119–123

    CAS  PubMed  Google Scholar 

  • Guerra-Blanco P, Cortes O, Poznyak T, Chairez I, García-Peña EI (2018) Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition. Eur Polym J 98:94–104

    CAS  Google Scholar 

  • Haase SM, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24:157–162

    CAS  Google Scholar 

  • Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M, Forchhammer K (2013) Metabolic changes in Synechocystis PCC 6803 upon nitrogen-starvation: excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3:101–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jau MH, Yew SP, Toh PSY, Chong ASC, Chu WL, Phang SM, Najimudin N, Sudesh K (2005) Biosynthesis and mobilization of poly(3-hydroxybutyrate) [P(3HB)] by Spirulina platensis. Int J Biol Macromol 36:144–151

    CAS  PubMed  Google Scholar 

  • Kaewbai-ngam A, Incharoensakdi A, Monshupanee T (2016) Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: an efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresour Technol 212:342–347

    CAS  PubMed  Google Scholar 

  • Kavitha G, Kurinjimalar C, Sivakumar K, Aravind R, Shree CG, Arthi K, Palani P, Kaviyarasan V, Rengasamy R (2016) Mass cultivation of UV-B adapted Arthrospira platensis RRGK under open raceway pond for the production of poly-β-hydroxy butyrate. Int J Biol Macromol 93:1304–1316

    CAS  PubMed  Google Scholar 

  • Kedia G, Passanha P, Dinsdale RM, Guwy AJ, Esteves SR (2014) Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator. Biotechnol Bioprocess Eng 19:989–995

    CAS  Google Scholar 

  • Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326

    CAS  PubMed  Google Scholar 

  • Khetkorn W, Incharoensakdi A, Lindblad P, Jantaro S (2016) Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour Technol 214:761–768

    CAS  PubMed  Google Scholar 

  • Krasaesueb N, Incharoensakdi A, Khetkorn W (2019) Utilization of shrimp wastewater for poly-β-hydroxybutyrate production by Synechocystis sp. PCC 6803 strain ΔSphU cultivated in photobioreactor. Biotechnol Rep 23: e00345

  • Lane CE, Benton MG (2015) Detection of the enzymatically-active polyhydroxyalkanoate synthase subunit gene, phaC, in cyanobacteria via colony PCR. Mol Cell Probes 29:454–460

    CAS  PubMed  Google Scholar 

  • Lathwal P, Nehra K, Singh M, Rana JS (2018) Characterization of novel and efficient poly-3-hydroxybutyrate (PHB) producing bacteria isolated from rhizospheric soils. J Polym Environ 26:3437–3450

    CAS  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production. Biomass Bioenergy 74:268–279

    CAS  Google Scholar 

  • Manirafasha E, Murwanashyaka T, Ndikubwimana T, Rashid Ahmed N, Liu J, Lu Y, Zeng X, Ling X, Jing K (2018) Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresour Technol 255:293–301

    CAS  PubMed  Google Scholar 

  • Mendhulkar VD, Shetye LA (2017) Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongatus under mixotrophic nitrogen- and phosphate-mediated stress conditions. Ind Biotechnol 13:85–93

    CAS  Google Scholar 

  • Monshupanee T, Nimdach P, Incharoensakdi A (2016) Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci Rep 6:37121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oehmen A, Zeng RJ, Saunders AM, Blackall LL, Keller J, Yuan Z (2006) Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. Microbiology 152:2767–2778

    CAS  PubMed  Google Scholar 

  • Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97:1296–1301

    CAS  PubMed  Google Scholar 

  • Pu N, Hu P, Shi L-L, Li Z-J (2020) Microbial production of poly(3-hydroxybutyrate) from volatile fatty acids using the marine bacterium Neptunomonas concharum. Bioresour Technol Rep 11:100439

    Google Scholar 

  • Raksajit W, Satchasataporn K, Lehto K, Mäenpää P, Incharoensakdi A (2012) Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. Int J Hydrog Energy 37:18791–18797

    CAS  Google Scholar 

  • Raksajit W, Maneeruttanarungroj C, Mäenpää P, Lehto K, Incharoensakdi A (2020) Upregulation of Hox-hydrogenase gene expression by nutrient adjustment in the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. J Appl Phycol. https://doi.org/10.1007/s10811-020-02217-x

  • Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56

    CAS  Google Scholar 

  • Rodríguez-Contreras A, Koller M, Braunegg G, Marqués-Calvo MS (2016) Poly[(R)-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain. New Biotechnol 33:73–77

    Google Scholar 

  • Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514

    CAS  PubMed  Google Scholar 

  • Sharma L, Mallick N (2005a) Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources. Bioresour Technol 96:1304–1310

    CAS  PubMed  Google Scholar 

  • Sharma L, Mallick N (2005b) Enhancement of poly-β-hydroxybutyrate accumulation in Nostoc muscorum under mixotrophy, chemoheterotrophy and limitations of gas-exchange. Biotechnol Lett 27:59–62

    CAS  PubMed  Google Scholar 

  • Shimamatsu H (2004) Mass production of Spirulina, an edible microalga. Hydrobiologia 512:39–44

    Google Scholar 

  • Shrivastav A, Mishra SK, Mishra S (2010) Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol 46:255–260

    CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2017) Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiol Lett 364:189 fnx189

  • Singh MK, Rai PK, Rai A, Singh S, Singh JS (2019) Poly-β-hydroxybutyrate production by the cyanobacterium Scytonema geitleri Bharadwaja under varying environmental conditions. Biomolecules 9:198

    CAS  PubMed Central  Google Scholar 

  • Sudesh K, Taguchi K, Doi Y (2002) Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int J Biol Macromol 30:97–104

    CAS  PubMed  Google Scholar 

  • Taepucharoen K, Tarawat S, Puangcharoen M, Incharoensakdi A, Monshupanee T (2017) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) under photoautotrophy and heterotrophy by non-heterocystous N2-fixing cyanobacterium. Bioresour Technol 239:523–527

    CAS  PubMed  Google Scholar 

  • Velmurugan R, Incharoensakdi A (2019) Metal oxide mediated extracellular NADPH regeneration improves ethanol production by engineered Synechocystis sp. PCC 6803. Front Bioeng Biotechnol 7:148

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported by graduate study development scholarship from the National Research Council of Thailand as of 2020 fiscal year to C. Duangsri and W. Raksajit, by the Capacity Building of KU Students on Internationalization Program (KUCSI 2020), Kasetsart University, Bangkok, Thailand to N. Mudtham and W. Raksajit, and by the Kasetsart University and Development Institute (KURDI), Bangkok, Thailand (Grant No.W-T(D)154.58) to W. Raksajit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuttinun Raksajit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duangsri, C., Mudtham, NA., Incharoensakdi, A. et al. Enhanced polyhydroxybutyrate (PHB) accumulation in heterotrophically grown Arthrospira platensis under nitrogen deprivation. J Appl Phycol 32, 3645–3654 (2020). https://doi.org/10.1007/s10811-020-02272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02272-4

Keywords

Navigation