Skip to main content

Advertisement

Log in

Diverse steroidogenic pathways in the marine alga Aurantiochytrium

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The heterotrophic alga Aurantiochytrium accumulates a high amount of squalene, which is a key precursor to the biosynthesis of sterols and steroids. However, post-squalene sterol pathways of the algae have been enigmatic. Using NMR-based chemical approaches complemented by in silico analysis of Aurantiochytrium genome, we identified 7 sterols including novel derivatives and predicted multiple sterol metabolic pathways. Based on known sterol distribution among eukaryotes, phylogeny, and our findings, we suggest that Aurantiochytrium could possess multiple sterol metabolic pathways of both photosynthetic and non-photosynthetic lineages with highly proliferated genes encoding the associated enzymes. Aurantiochytrium possibly possesses well-developed networks of sterol metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akihisa T, Thakur S, Rosenstein FU, Matsumoto T (1986) Sterols of Cucurbitaceae: the configurations at C-24 of 24-alkyl-Δ5-, Δ7- and Δ8-sterols. Lipids 21:39–47

    CAS  PubMed  Google Scholar 

  • Akihisa T, Shimizu N, Ghosh P, Thakur S, Rosenstein FU, Tamura T (1987) Sterols of the cucurbitaceae. Phytochemistry 261:1693–1700

    Google Scholar 

  • Akihisa T, Matsubara Y, Ghosh P, Thakur S, Shimizu N, Tamura T, Matsumoto T (1988) The 24α- and 24β-epimers of 24-ethylcholesta-5,22-dien-3β-ol in two Clerodendrum species. Phytochemistry 27:1169–1172

    CAS  Google Scholar 

  • Albrizio S, Ciminiello P, Fattorusso E, Magno S, Pansini M (1994) Chemistry of Verongida sponges. I. Constituents of the Caribbean sponge Pseudoceratina crassa. Tetrahedron 50:783–788

    CAS  Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1994) Production of docosahexaenoic acid by Thraustochytrium aureum. Appl Microbiol Biotechnol 35:706–710

    Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    CAS  PubMed  Google Scholar 

  • Balliano G, Caputo O, Viola F, Delprino L, Cattel L (1983) Conversion of cyclolaudenol to 24α- and 24β-ethylsterols in the cucurbitaceae. Lipids 18:302–305

    CAS  Google Scholar 

  • Desmond E, Gribaldo S (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol 1:364–381

    PubMed  PubMed Central  Google Scholar 

  • Emmons GT, Wilson KW, Schroepfer GJ Jr (1989) 1H and 13C NMR assignments for lanostan-3β-ol derivatives: revised assignments for lanosterol. Magn Reson Chem 27:1012–1024

    CAS  Google Scholar 

  • Fabris M, Matthijs M, Carbonelle S, Moses T, Pollier J, Dasseville R, Baart GJ, Vyverman W, Goossens A (2014) Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum. New Phytol 204:521–535

    CAS  PubMed  Google Scholar 

  • Forestier E, Romero-Segura C, Pateraki I, Centeno E, Compagnon V, Preiss M, Berna A, Boronat A, Bach TJ, Darnet S, Schaller H (2019) Distinct triterpene synthesis in the laticifers of Euphorbia lathyris. Sci Rep. https://doi.org/10.1038/s41598-019-40905-y

  • Gershengorn MC, Smith AR, Goulston G, Goad LJ, Goodwin TW, Haines TH (1968) The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry 7:1698–1706

    CAS  PubMed  Google Scholar 

  • Goad LJ, Lenton JR, Knapp FF, Goodwin TW (1974) Phytosterol side chain biosynthesis. Lipids 9:582–595

    CAS  PubMed  Google Scholar 

  • Gold DA, Grabenstatter J, de Mendoza A, Riesgo A, Ruiz-Trillo I, Summons R (2016) Sterol and genomic analyses validate the sponge biomarker hypothesis. PNAS 113:2684–2689

    CAS  PubMed  Google Scholar 

  • Hall J, Smith AR, Goad LJ, Goodwin TW (1969) The conversion of lanosterol, cycloartenol and 24-methylenecycloartanol into poriferasterol by Ochromonas malhamensis. Biochem J 112:129–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hannich JT, Umebayashi K, Riezman H (2011) Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 3:1–13

    Google Scholar 

  • Haubrich BA, Collins EK, Howard AL, Wang Q, Snell WJ, Miller MB, Thomas CD, Pleasant SK, Nes WD (2015) Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: implications for understanding sterol evolution in the green lineage. Phytochemistry 113:64–72

    CAS  PubMed  Google Scholar 

  • Honda A, Yamashita K, Miyazaki H, Shirai M, Ikegami T, Xu GR, Numazawa M, Hara T, Matsuzaki Y (2008) Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J Lipid Res 49:2063–2073

    CAS  PubMed  Google Scholar 

  • Iida T, Jeong M, Tamura t, Matsumoto T (1980) Identification of chondrillasterol in two Cucurbitaceae seed oils by proton nuclear magnetic resonance spectroscopy. Lipids 15: 66–68

  • Itoh T, Kikuchi Y, Tamura T, Matsumoto T (1981) Co-occurrence of chondrillasterol and spinasterol in two cucurbitaceae seeds as shown by 13C NMR. Phytochemistry 20:761–764

    CAS  Google Scholar 

  • Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W-13a accumulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248

    CAS  PubMed  Google Scholar 

  • Knapp FF, Goad LJ, Goodwin TW (1977) The conversion of 24-ethylidene sterols into poriferasterol by the alga Ochromonas malhamensis. Phytochemistry 16:1683–1688

    CAS  Google Scholar 

  • Koklesnikova MD, Xiong Q, Lodeiro S, Hua L, Matsuda SP (2006) Lanosterol biosynthesis in plants. Arch Biochem Biophys 447:87–95

    Google Scholar 

  • Kumar A, Fogelman E, Weissberg M, Tanami Z, Veilleux R, Ginzberg I (2017) Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta 246:1189–1202

    CAS  PubMed  Google Scholar 

  • Lenton JR, Hall J, Smith AR, Ghisalberti EL, Rees HH, Goad LJ, Goodwin TW (1971) The utilization of potential phytosterol precursors by Ochromonas malhamensis. Arch Biochem Biophys 143:664–674

    CAS  PubMed  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (2001) Sterol and squalene content of a docosahexaenoic-acid-producing thraustochytrid: influence of culture age, temperature, and dissolved oxygen. Mar Biotechnol 3:439–447

    CAS  PubMed  Google Scholar 

  • Li ZY, Ward OP (1994) Production of docosahexaenoic acid by Thraustochytrium roseum. J Ind Microbiol 13:238–241

    CAS  PubMed  Google Scholar 

  • Lu Y, Zhou W, Wei L, Li J, Jia J, Li F, Smith SM, Xu J (2014) Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalgae Nannochloropsis oceanica. Biotechnol Biofuels 7:1–15

    CAS  Google Scholar 

  • Miller BM, Haubrich BA, Wang Q, Snell WJ, Nes WD (2012) Evolutionary conserved ∆25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii. J Lipid Res 53:1636–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano N, Taoka Y, Honda D, Hayashi M (2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium limacinum mh0186. J Oleo Sci 58:623–628

    CAS  PubMed  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour Technol 109:287–291

    CAS  PubMed  Google Scholar 

  • Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, Tanabe Y, Kusuda E, Thang DV, Ueda M, Honda D, Mahakhant A, Kaya K, Watanabe MM (2014) TLC screening of thraustochytrid strains for squalene production. J Appl Phycol 26:29–41

    CAS  Google Scholar 

  • Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nes WR, Krevitz K, Joseph J, Nes WD (1977) The phylogenetic distribution of sterols in tracheophytes. Lipids 12:511–527

    CAS  Google Scholar 

  • Ohyama K, Suzuki M, Kukuchi J, Saito K, Muranaka T (2009) Dual biosynthetic pathway to phytosterol via cycloartenol and lanosterol in Arabidopsis. PNAS 106:725–730

    CAS  PubMed  Google Scholar 

  • Ori K, Koroda M, Mimaki Y, Sakagami H, Sashida Y (2003) Lanosterol and tetranorlanosterol glycosides from the bulbs of Muscari paradoxum. Phytochemistry 64:1351–1359. https://doi.org/10.1016/s0031-942

  • Patterson GW (1967) Sterols of Chlorella. II. The occurrence of an unusual sterol mixture in Chlorella vulgaris. Plant Physiol 42:1457–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson GW (1971) Distribution of sterols in algae. Lipids 6:120–127

    CAS  Google Scholar 

  • Patterson GW (1991) Sterols of algae. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists’ Society Champaingn, Illinois, pp 118–157

    Google Scholar 

  • Patterson GW, Doyle PJ, Dickson LG, Chan JT (1974) Effects of triparanol and AY-9944 upon sterol biosynthesis in Chlorella. Lipids 9:567–574

    CAS  PubMed  Google Scholar 

  • Řezanka T, Vyhnalek O, Podojil M (1986) Identification of sterols and alcohols produced by green algae of the genera Chlorella and Scenedesmus by means of gas chromatography-mass spectrometry. Folia Microbiol 31:44–49

    Google Scholar 

  • Riisberg I, Orr RJS, Kluge R, Shalchian-Tabrizi K, Bowers HA, Patil V, Edvardsen B, Jakobsen KS (2009) Seven gene phylogeny of heterokonts. Protist 160:191–204

    CAS  PubMed  Google Scholar 

  • Schaller H (2004) New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42:465–476

    CAS  PubMed  Google Scholar 

  • Smith TJ (2000) Squalene: potential chemopreventive agent. Expert Opin Investig Drugs 9:1841–1848

    CAS  PubMed  Google Scholar 

  • Smith AR, Goad LJ, Goodwin TW (1972) Incorporation of stereospecifically labeled mevalonic acid into poriferasterol by Ochromonas malhamensis. Phytochemistry 11:2775–2781

    CAS  Google Scholar 

  • Suzuki M, Xiang T, Ohyama K, Seki H, Saito K, Muranaka T, Hayashi H, Katsube Y, Kushiro T, Shibuya M, Ebizuka Y (2006) Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol 47:565–571

    CAS  PubMed  Google Scholar 

  • Volkman JK (2016) Sterols in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Cham, pp 485–505

  • Weete JD, Kim H, Gandhi SR, Wang Y, Dute R (1997) Lipids and ultrastructure of Thraustochytrium sp. ATCC 26185. Lipids 32:839–845

    CAS  PubMed  Google Scholar 

  • Wilson WK, Sumpter RM, Warren JJ, Rogers PS, Ruan B, Schroepfer GJ Jr (1996) Analysis of unsaturated C27 sterols by nuclear magnetic resonance spectroscopy. J Lipid Res 37:1529–1555

    CAS  PubMed  Google Scholar 

  • Yao L, Gerde JA, Lee SL, Wang T, Harrata KA (2015) Microalgae lipid characterization. J Agric Food Chem 63:1773–1787

    CAS  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Yasuko Yoshikawa and Ms. Junko Hayashi (National Institute for Environmental Studies, Japan) for measurement of EIMS spectrum. The authors also thank Dr. Daiske Honda and Ms. Mayumi Ueda (Konan University, Japan) for their taxonomic advices about A. limacinum and A. mangrovei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Yoshida.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLS 31 kb)

ESM 2

(XLS 29 kb)

ESM 3

(XLS 44 kb)

ESM 4

(XLS 34 kb)

Fig S1

Well-developed networks of steroidogenic pathways inferred from sterol metabolism-related genes (PNG 258 kb)

High resolution image (TIF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M., Ioki, M., Matsuura, H. et al. Diverse steroidogenic pathways in the marine alga Aurantiochytrium. J Appl Phycol 32, 1631–1642 (2020). https://doi.org/10.1007/s10811-020-02078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02078-4

Keywords

Navigation