Skip to main content

Advertisement

Log in

Could ocean acidification influence epiphytism? A comparison of carbon-use strategies between Fucus vesiculosus and its epiphytes in the Baltic Sea

  • 23rd INTERNATIONAL SEAWEED SYMPOSIUM, JEJU
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Reduced seawater pH due to elevated carbon dioxide (CO2), a process known as ocean acidification (OA), is a globally significant environmental issue. OA is predicted to influence a range of ecosystem processes, but little is known about how changing seawater carbon chemistry could influence the extent and impacts of epiphytism. In the brackish Baltic Sea, increased epiphytism is associated with coastal eutrophication and the potential for OA to interact with this relationship remains unclear. This study focuses on slow-growing perennial algae Fucus vesiculosus—which is one of the most important habitat-forming species in the Baltic Sea—and two of its most common and abundant filamentous epiphytes Ceramium tenuicorne and Pylaiella littoralis. Material for this study was collected from Estonian coastal waters. The aim of the research was to determine which carbon acquisition strategies these species possess, which could indicate how they respond to predicted changes in seawater chemistry due to elevated CO2. Carbon-use strategies in macroalgae were determined by analyzing natural carbon isotope signatures (δ13C), pH drift experiments, and photosynthesis vs. dissolved inorganic carbon (P vs. DIC) curves. Our results showed that although F. vesiculosus and its filamentous epiphytes all possess a carbon concentrating mechanism (CCM), the potential species-specific variation in the CCMs operation will favor C. tenuicorne over F. vesiculosus and P. littoralis in a future high CO2 world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almén AK, Glippa O, Pettersson H, Alenius P, Engström-Öst (2017) Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers. Environ Monit Assess 189:147

    Article  PubMed  CAS  Google Scholar 

  • Bäck S, Likolammi M (2004) Phenology of Ceramium tenuicorne in the SW Gulf of Finland, northern Baltic Sea. Ann Bot Fenn 41:95–101

    Google Scholar 

  • Bäck S, Ruuskanen A (2000) Distribution and maximum growth depth of Fucus vesiculosus along the Gulf of Finland. Mar Biol 136:303–307

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. Retrieved from https://cran.r-project.org/web/packages/lme4/lme4.pdf on 10 June 2019.

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Beardall J, Roberts S (1999) Inorganic carbon acquisition by two Antarctic macroalgae, Porphyra endiviifolium (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales). Polar Biol 21:310–315

    Article  Google Scholar 

  • Berger R, Henriksson E, Kautsky L, Malm T (2003) Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea. Aquat Ecol 37:1–11

    Article  Google Scholar 

  • Berger R, Bergström L, Granéli E, Kautsky L. (2004) How does eutrophication affect different life stages of Fucus vesiculosus in the Baltic Sea? — a conceptual model. In: Kautsky H, Snoeijs P. (eds) Biology of the Baltic Sea. Springer, Dordrecht pp243–248

  • Bergström L (2005) Macroalgae in the Baltic Sea–responses to low salinity and nutrient enrichment in Ceramium and Fucus. PhD Thesis, Umea University, Umea, Sweden

  • Bergström L, Kautsky L (2006) Local adaptation of Ceramium tenuicorne (Ceramiales, Rhodophyta) within Baltic Sea. J Phycol 42:36–42

    Article  Google Scholar 

  • Bonsdorff E, Blomqvist EM, Mattila J, Norkko A (1997) Coastal eutrophication: causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuar Coast Shelf Sci 44:63–72

    Article  Google Scholar 

  • Brutemark A, Engström-Öst J, Vehmaa A (2011) Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanol Hydrobiol Stud 40:91

    Article  CAS  Google Scholar 

  • Burnell OW, Russell BD, Irving AD, Connell SD (2014) Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects. Oecologia 176:871–882

    Article  PubMed  Google Scholar 

  • Cederwall H, Elmgren R (1990) Biological effects of eutrophication of the Baltic Sea, particularly the coastal zone. Ambio 19:109–112

    Google Scholar 

  • Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc B 277:1409–1415

    Article  PubMed  PubMed Central  Google Scholar 

  • Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD (2013) The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Phil Trans R Soc B 368:20120442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144

    Article  CAS  PubMed  Google Scholar 

  • Cornwall CE, Revill AT, Hurd CL (2015) High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth Res 124:181–190

    Article  CAS  PubMed  Google Scholar 

  • Cornwall CE, Revill AT, Hall-Spencer JM, Milazzo M, Raven JA, Hurd CL (2017) Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci Rep 7:46297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox TE, Schenone S, Delille J, Díaz-Castañeda V, Alliouane S, Gattuso JP, Gazeau F (2015) Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. J Ecol 103:1594–1609

    Article  CAS  Google Scholar 

  • Diaz-Pulido G, Cornwall C, Gartrell P, Hurd C, Tran DV (2016) Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification. Coral Reefs 35:1327–1341

    Article  Google Scholar 

  • Eriksson BK, Johansson G (2003) Sedimentation reduces recruitment success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. Eur J Phycol 38:217–222

    Article  Google Scholar 

  • Eriksson BK, Johansson G, Snoeijs P (1998) Long-term changes in the sublittoral zonation of brown algae in the southern Bothnian Sea. Eur J Phycol 33:241–249

    Article  Google Scholar 

  • Eriksson BK, Johansson G, Snoeijs P (2002) Long-term changes in the macroalgal vegetation of the inner Gullmar fjord, Swedish Skagerrak coast. J Phycol 38:284–296

    Article  Google Scholar 

  • Eriksson BK, Rubach A, Hillebrand H (2006) Biotic habitat complexity controls species diversity and nutrient effects on net biomass production. Ecology 87:246–254

    Article  PubMed  Google Scholar 

  • Falkenberg LJ, Russell BD, Connell SD (2013) Contrasting resource limitations of marine primary producers: implications for competitive interactions under enriched CO2 and nutrient regimes. Oecologia 172:575–583

    Article  PubMed  Google Scholar 

  • Gattuso J, Hansson L (2011) Ocean acidification. Oxford University Press, New York 326 pp

    Book  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Graiff A, Bartsch I, Ruth W, Wahl M, Karsten U (2015) Season exerts differential effects of ocean acidification and warming on growth and carbon metabolism of the seaweed Fucus vesiculosus in the western Baltic Sea. Front Mar Sci 2:112

  • Harder T (2009) Marine epibiosis: concepts, ecological consequences and host defence. In: Flemming H-C, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and industrial biofouling. Springer, Berlin, pp 219–231

    Chapter  Google Scholar 

  • HELCOM (2009) Eutrophication in the Baltic Sea–an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt. Sea Environ. Proc. No. 115B

  • HELCOM (2013) Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Balt. Sea Environ. Proc. No. 137

  • HELCOM (2017) The integrated assessment of eutrophication-supplementary report to the first version of the ‘State of the Baltic Sea’ report 2017. Retrieved from http://stateofthebalticsea.helcom.fi/about-helcom-and-the-assessment/downloads-and-data/ on 25 June 2019

  • Hepburn CD, Pritchard DW, Cornwall CE et al (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol 17:2488–2497

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing effects of ocean acidification on algal metabolism: consideration for experimental designs. J Phycol 45:1236–1251

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland 151 pp

    Google Scholar 

  • Isæus M, Malm T, Persson S, Svensson A (2004) Effects of filamentous algae and sediment on recruitment and survival of Fucus serratus (Phaeophyceae) juveniles in the eutrophic Baltic Sea. Eur J Phycol 39:301–307

    Article  Google Scholar 

  • Israel A, Hophy M (2002) Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob Chang Biol 8:831–840

    Article  Google Scholar 

  • Jacobucci GB, Güth AZ, Turra A, Leite FPP (2011) Influence of a narrow depth gradient and season on the morphology, phenology, and epibiosis of the brown alga Sargassum cymosum. J Mar Biol Assoc UK 91:761–770

    Article  Google Scholar 

  • James, RK (2011) Algal communities and their response to ocean acidification. MSc Thesis, University of Otago, Dunedin, New-Zealand.

  • Kangas SD, Autio G, Hallfors G, Luther H, Niemi A, Salemaa H (1982) A general model of the decline of Fucus vesiculosus at Tvarminne, south coast of Finland in 1977-81. Acta Bot Fenn 118:1–27

    Google Scholar 

  • Karez R, Engelbert S, Kraufvelin P, Pedersen MF, Sommer U (2004) Biomass response and changes in composition of ephemeral macroalgal assemblages along an experimental gradient of nutrient enrichment. Aquat Bot 78:103–117

    Article  Google Scholar 

  • Kautsky N, Kautsky H, Kautsky U, Waern M (1986) Decreased depth penetration of Fucus vesiculosus (L.) since the 1940’s indicates eutrophication of the Baltic Sea. Mar Ecol Prog Ser 28:1–8

    Article  Google Scholar 

  • Kautsky H, Kautsky L, Kautsky N, Kautsky U, Lindblad C (1992) Studies on the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeogr Suec 78:33–48

    Google Scholar 

  • Kersen P, Kotta J, Bučas M, Kolesova N, Deķere Z (2011) Epiphytes and associated fauna on the brown alga Fucus vesiculosus in the Baltic and the North Seas in relation to different abiotic and biotic variables. Mar Ecol 32:87–95

    Article  Google Scholar 

  • Kersen P, Paalme T, Treier R (2013) Variation in epibiotic load on the macroalgae Furcellaria lumbricalis and Fucus vesiculosus in the Baltic Sea. Abstract Book. CERF2013: Toward resilient coasts and estuaries, science for sustainable solutions: 22nd Biennial Conference of the Coastal and Estuarine Research Federation, San Diego, California, USA, 3-7 November. 118−118.

  • Kiirikki M (1996) Dynamics of macroalgal vegetation in the northern Baltic Sea–evaluating the effects of weather and eutrophication. Walter Andree Nottbecks Found Sci Rep 12:1–13

    Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132

    Article  PubMed  Google Scholar 

  • Korpinen S, Jormalainen V (2008) Grazing and nutrients reduce recruitment success of Fucus vesiculosus L. (Fucales: Phaeophyceae). Estuar Coast Shelf Sci 78:437–444

    Article  Google Scholar 

  • Korpinen S, Honkanen T, Vesakoski O, Hemmi A, Koivikko R, Loponen Y, Jormalainen V (2007) Macroalgal communities face the challenge of changing biotic interactions: review with focus on the Baltic Sea. Ambio 36:203–211

    Article  PubMed  Google Scholar 

  • Kotta H, Kotta J (2004) Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiologia 514:79–85

    Article  Google Scholar 

  • Kraberg AC, Norton TA (2007) Effect of epiphytism on reproductive and vegetative lateral formation in the brown, intertidal seaweed Ascophyllum nodosum (Phaeophyceae). Phycol Res 55:17–24

    Article  Google Scholar 

  • Kuznetsov I, Neumann T (2013) Simulation of carbon dynamics in the Baltic Sea with a 3D model. J Mar Syst 111–112:167–174

    Article  Google Scholar 

  • Lehtinen KJ, Notini M, Mattsson J, Landner L (1988) Disappearance of bladder-wrack (Fucus vesiculosus L.) in the Baltic Sea: relation to pulp-mill chlorate. Ambio 17:387–393

    Google Scholar 

  • Leskinen E, Makinen A, Fortelius W, Lindstrom M, Salemaa H (1992) Primary production of macroalgae in relation to the spectral range and sublittoral light conditions in the Tvarminne archipelago, northern Baltic Sea. Acta Phytogeogr Suec 78:85–93

    Google Scholar 

  • Lotze HK, Schramm W, Schories D, Worm B (1999) Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119:46–54

    Article  PubMed  Google Scholar 

  • Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26:439–449

    Article  CAS  Google Scholar 

  • Malm T, Isæus M (2005) Distribution of macroalgal communities in the central Baltic Sea. Ann Bot Fenn 42:257–266

    Google Scholar 

  • Mercado JM, Gordillo FJL (2011) Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems? Photosynth Res 109:257

    Article  CAS  PubMed  Google Scholar 

  • Michaelis M, Menten ML (1913) Kinetics of invertase action. Biochem Z 49:333–369

    CAS  Google Scholar 

  • Middelboe AL, Sand-Jensen K (2000) Long-term changes in macroalgal communities in a Danish estuary. Phycologia 39:245–257

    Article  Google Scholar 

  • Müller JD (2018) Ocean acidification in the Baltic Sea: involved processes, metrology of pH in brackish waters, and calcification under fluctuating conditions. PhD Thesis, University of Rostock, Rostock, Germany

  • Nayar S, Collings GJ, Miller DJ, Bryars S, Cheshire AC (2009) Uptake and resource allocation of inorganic carbon by the temperate seagrasses Posidonia and Amphibolis. J Exp Mar Biol Ecol 373:87–95

    Article  CAS  Google Scholar 

  • Nygård CA, Dring MJ (2008) Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. Eur J Phycol 43:253–262

    Article  CAS  Google Scholar 

  • Omstedt A, Edman M, Claremar BJ, Frodin P, Gustafsson E, Humborg E, Hägg H, Mörth M, Rutgersson A, Schurgers G, Smith B, Wällstedt T, Yurova A (2012) Future changes in the Baltic Sea acid–base (pH) and oxygen balances. Tellus B 64:19586

    Article  Google Scholar 

  • Paalme T (2005) Nuisance brown macroalga Pilayella littoralis: primary production, decomposition and formation of drifting algal mats. PhD thesis, Tallinn University, Estonia

  • Paalme T, Kukk H (2003) Comparison of net primary production rates of Pilayella littoralis (L.) Kjellm. and other dominating macroalgal species in Kõiguste Bay, northeastern Baltic Sea. Proc Estonian Acad Sci Biol Ecol 52:125

    Article  CAS  Google Scholar 

  • Pajusalu L, Martin G, Põllumäe A, Paalme T (2013) Results of laboratory and field experiments of the direct effect of increasing CO2 on net primary production of macroalgal species in brackish-water ecosystems. Proc Estonian Acad Sci 62:148–154

    Article  CAS  Google Scholar 

  • Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/ (last accessed 27 June 2019)

  • Råberg S (2004) Competition from filamentous algae on Fucus vesiculosus—negative effects and the implications on biodiversity of associated flora and fauna. Plant Ecology, vol. 4. Licenciate Thesis. Department of Botany, Stockholm University, pp 1–26

  • Råberg S, Kautsky L (2007) A comparative biodiversity study of the associated fauna of perennial fucoids and filamentous algae. Estuar Coast Shelf Sci 73:249–258

    Article  Google Scholar 

  • Raven JA (2003) Inorganic carbon concentrating mechanisms in relation to the biologyof algae. Photosynth Res77:155–171

  • Raven JA, Beardall J (2014) CO2 concentrating mechanisms and environmental change. Aquat Bot 118:24–37

    Article  CAS  Google Scholar 

  • Raven JA, Osmond CB (1992) Inorganic C Acquisition processes and their ecological significance in inter- and sub-tidal macroalgae of North Carolina. Funct Ecol 6:41–47

    Article  Google Scholar 

  • Raven JA, Samuelsson G (2009) Ecophysiology of Fucus vesiculosus L. Close to its northern limit in the Gulf of Bothnia. Bot Mar 31:399

    Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb R, Mclnroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton K (2002) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC (2005) Algae lacking carbon-concentrating mechanisms. Can J Bot 83:879–890

    Article  CAS  Google Scholar 

  • Rohde S, Hiebenthal C, Wahl M, Karez R, Bischof K (2008) Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis. Eur J Phycol 43:143–150

    Article  Google Scholar 

  • Rönnberg O, Ådjers K, Ruokolahti C, Bondestam M (1992) Effects of fish farming on growth, epiphytes and nutrient content of Fucus vesiculosus L. in the Åland archipelago, northern Baltic Sea. Aquat Bot 42:109–120

    Article  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Article  Google Scholar 

  • Rothäusler E, Corell H, Jormalainen V (2015) Abundance and dispersal trajectories of floating Fucus vesiculosus in the Northern Baltic Sea. Limnol Oceanogr 60:2173–2184

    Article  Google Scholar 

  • Russell BD, Elsdon TS, Gillanders BM, Connell SD (2005) Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment. Mar Biol 147:551–558

    Article  Google Scholar 

  • Russell BD, Passarelli CA, Connell SD (2011) Forecasted CO2 modifies the influence of light in shaping subtidal habitat. J Phycol 47:744–752

    Article  PubMed  Google Scholar 

  • Schanz A, Polte P, Asmus H (2002) Cascading effects of hydrodynamics on an epiphyte–grazer system in intertidal seagrass beds of the Wadden Sea. Mar Biol 141:287–297

    Article  Google Scholar 

  • Schramm W, Nienhuis PH (1996) Marine benthic vegetation. Recent changes and effects ofutrophication. Springer, Berlin 465 pp

    Book  Google Scholar 

  • Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78:97–105

    Article  PubMed  Google Scholar 

  • Torn K, Krause-Jensen D, Martin G (2006) Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea. Aquat Bot 84:53–62

    Article  Google Scholar 

  • Trautman DA, Borowitzka MA (1999) Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Mar Ecol Prog Ser 179:215–229

    Article  Google Scholar 

  • Vahteri P, Vuorinen I (2016) Continued decline of the bladderwrack, Fucus vesiculosus, in the Archipelago Sea, northern Baltic proper. Boreal Environ Res 21:373–386

    Google Scholar 

  • Vahteri P, Mäkinen A, Salovius S, Ilppo V (2000) Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland? AMBIO 29:338–343

    Article  Google Scholar 

  • Vanderklift MA, Lavery PS (2000) Patchiness in assemblages of epiphytic macroalgae on Posidonia coriacea at a hierarchy of spatial scales. Mar Ecol Prog Ser 192:127–135

    Article  Google Scholar 

  • Vogt H, Schramm W (1991) Conspicuous decline of Fucus in Kiel Bay (Western Baltic): what are the causes? Mar Ecol Prog Ser 69:189–194

    Article  Google Scholar 

  • Waern M (1952) Rocky shore algae in the Öregrund archipelago. Acta Phytogeogr Suec 30:1–298

    Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Wahl M (2008) Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24:427–438

    Article  PubMed  Google Scholar 

  • Wahl M, Mark O (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66

    Article  Google Scholar 

  • Wikström SA, Kautsky L (2007) Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuar Coast Shelf Sci 72:168–176

    Article  Google Scholar 

  • Worm B, Sommer U (2000) Rapid direct and indirect effects of a single nutrient pulse in a seaweed-epiphyte-grazer system. Mar Ecol Prog Ser 202:283–288

    Article  Google Scholar 

  • Worm B, Lotze HK, Boström C, Engvist R, Labanauskas V, Sommer U (1999) Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Mar Ecol Prog Ser 185:309–314

    Article  Google Scholar 

  • Young EB, Beardall J (2005) Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron, and light availability. Can J Bot 83:917–928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out partially in a training workshop: Diversity of carbon use strategies in a different macrophyte communities in the NE Baltic Sea, in July 2018 at Kõiguste field station of the Estonian Marine Institute, Saaremaa Island. We would like to thank all the participants that contributed and also the University of Tartu, Department of Geology, for the help in determining the natural carbon isotope values.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerli Albert.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, G., Hepburn, C.D., Pajusalu, L. et al. Could ocean acidification influence epiphytism? A comparison of carbon-use strategies between Fucus vesiculosus and its epiphytes in the Baltic Sea. J Appl Phycol 32, 2479–2487 (2020). https://doi.org/10.1007/s10811-019-01953-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01953-z

Keywords

Navigation