Skip to main content
Log in

Methods of analysis for the in vitro and in vivo determination of the fungicidal activity of seaweeds: a mini review

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biosecurity is emerging as one of the most important issues facing the agricultural and forestry communities, with the use of chemical pesticides being the main protocol for controlling plant pathogens. However, as a result of the emergence of resistance against these controls and the negative impact chemicals have on the environment, coupled with more stringent European Union regulations, this will have to change. The search for safer alternatives has begun, with seaweed becoming an interesting focus as a potential biopesticide due to its ability to produce a broad spectrum of chemically active secondary metabolites. These secondary metabolites possess biological properties including antimicrobial, antioxidant, anti-inflammatory, and antifungal. There is a need to develop reliable methods with the ability to rapidly screen and evaluate the potential pesticidal activity in seaweeds. This review focuses on the current methods used to investigate the fungicidal activity of seaweed extracts including in vitro methods namely disk diffusion and in vivo methods namely, the screen-house study and the advantages and disadvantages associated with each method. It was concluded that no one method is suitable for all test organisms or extracts after careful consideration of the literature. Additionally, this review confirms the promising potential of seaweeds as biopesticides with studies demonstrating that seaweeds are active against a wide variety of fungal diseases. It was noted that further research needs to be carried out on the isolation, purification, and identification of the bioactive compounds present in seaweeds in order to facilitate the future potential application of these novel biopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbassy AM, Marzouk AM, Rabea IE, Abd-Elnabi DA (2014) Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and fractions. Annu Res Rev Biol 4:2252–2262

    Google Scholar 

  • Abkhoo J, Sabbagh SK (2015) Control of Phytophthora melonis damping-off, induction of defense responses, and gene expression of cucumber treated with commercial extract from Ascophyllum nodosum. J Appl Phycol 28:1333–1342

    Google Scholar 

  • Abouraïcha E, El Alaoui-Talibi Z, El Boutachfaiti R, Petit E, Courtois B, Courtois J, El Modafar C (2015) Induction of natural defense and protection against Penicillium expansum and Botrytis cinerea in apple fruit in response to bioelicitors isolated from green algae. Sci Hortic 181:121–128

    Google Scholar 

  • Abouraïcha EF, El Alaoui-Talibi Z, Tadlaoui-Ouafi A, El Boutachfaiti R, Petit E, Douira A, Courtois B, Courtois J, El Modafar C (2016) Glucuronan and oligoglucuronans isolated from green algae activate natural defense responses in apple fruit and reduce postharvest blue and gray mold decay. J Appl Phycol 29:471–480

    Google Scholar 

  • Ali N, Ramkissoon A, Ramsubhag A, Jayaraman J (2016) Ascophyllum extract application causes reduction of disease levels in field tomatoes grown in a tropical environment. Crop Prot 83:67–75

    Google Scholar 

  • Allen ED, Hatfield G (2004) Medicinal plants in folk tradition. An ethnobotany of Britain and Ireland. Timber Press, Portland 431 pp

    Google Scholar 

  • Algaebase (2019) The seaweed site: information on marine algae http://www.seaweed.ie. Accessed 18 Sept 2015

  • Ambika S, Sujatha K (2015) Antifungal activity of aqueous and ethanol extracts of seaweeds against sugarcane red rot pathogen (Colletotrichum falcatum). Sci Res Essays 10:232–235

    CAS  Google Scholar 

  • Ameer JBM, Selvaraju P, Vijayakumar A (2016) Evaluation of antifungal activity of seaweed extract (Turbinaria conoides) against Fusarium oxysporum. J Appl Nat Sci 8:60–62

    Google Scholar 

  • Araujo L, Stadnik MJ (2013) Cultivar-specific and ulvan-induced resistance of apple plants to Glomerella leaf spot are associated with enhanced activity of peroxidases. Acta Sci Agron 35:287–293

    Google Scholar 

  • Aruna P, Mansuya P, Sridhar S, Kumar SJ, Babu S (2010) Pharmacognostical and antifungal activity of selected seaweeds from Gulf of Manner Region. Recent Res Sci Technol 2:115–119

    Google Scholar 

  • Asha A, Rathi MJ, Raja PD, Sahayaraj K (2012) Biocidal activity of two marine green algal extracts against third instar nymph of Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J Biopesticid 5:129–134

    Google Scholar 

  • Asiegbu OF, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409

    PubMed  Google Scholar 

  • Aziza HS, Flower EM, Margareth SK, Aviti JM, Evalyn WM, Eystein S, Helena AN, Jan LL (2018) Health problems related to algal bloom among seaweed farmers in coastal areas of Tanzania. J Public Health Epidemiol 10:303–312 

    Google Scholar 

  • Azwanida NN (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 04:1–6

  • Balog A, Hartel T, Loxdale HD, Wilson K (2017) Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions. Pest Manag Sci 73:2203–2208

    CAS  PubMed  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anals 6:71–79

    Google Scholar 

  • Bandyopadhyay RF, Frederiksen RA (1999) Contemporary global movement of emerging plant diseases. Ann N Y Acad Sci 894:28–26

    CAS  PubMed  Google Scholar 

  • Barreto M, Meyer JJM (2006) Isolation and antimicrobial activity of a lanosol derivative from Osmundaria serrata (Rhodophyta) and a visual exploration of its biofilm covering. S Afr J Bot 72:521–528

    CAS  Google Scholar 

  • Barreto M, Straker CJ, Critchley AT (1997) Short note on the effects of ethanolic extracts of selected South African seaweeds on the growth of commercially important plant pathogens, Rhizoctonia solani Kühn and Verticillium sp. S Afr J Bot 63:521–523

    Google Scholar 

  • Bianco EM, Pires L, Santos GKN, Dutra KA, Reis TNV, Vasconcelos ERTPP, Cocentino ALM, Navarro DMAF (2013) Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Ind Crop Prod 43:270–275

    CAS  Google Scholar 

  • Bilal H, Sahar S, Din S (2017) Bio-pesticides: new tool for the control of Aedes (Stegomyia) albopictus (Culicidae: Diptera) in Pakistan. J Arthropod Borne Dis 11:278–285

    PubMed  PubMed Central  Google Scholar 

  • Brownlee IA, Fairclough A.C., Hall A.C., Paxman J.R. (2011) Dietary seaweed and human health. In: Culinary arts and sciences VII: global, national and local perspectives. Bournemouth University International Centre for Tourism and Hospitality Research. Bournemouth University, UK, pp 82–88

  • Brownlee AI, Fairclough CA, Hall CA, Paxmam RJ (2012) The potential health benefits of seaweed and seaweed extract. In: Pomin VH (ed) Seaweed: ecology, nutrient composition and medicinal uses. Marine Biology: Earth Sciences in the 21st Century. Nova Science Publishers, New York, pp 119–136

    Google Scholar 

  • Buch AC, Brown GG, Niva CC, Sautter KD, Sousa JP (2013) Toxicity of three pesticides commonly used in Brazil to Pontoscolex corethrurus (Müller, 1857) and Eisenia andrei (Bouché, 1972). Appl Soil Ecol 69:32–38

    Google Scholar 

  • Cespedes CL, Salazar JR, Ariza-Castolo A, Yamaguchi L, Avila JG, Aqueveque P, Kubo I, Alarcon J (2014) Biopesticides from plants: Calceolaria integrifolia s.l. Environ Res 132:391–406

    CAS  PubMed  Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res Int 22:119–134

    CAS  PubMed  Google Scholar 

  • Chanthini K, Kumar SC, Kingsley JS (2012) Antifungal activity of seaweed extracts against phytopathogen Alternaria solani. J Acad Indust Res 1:86–90

    Google Scholar 

  • Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coorevits L, Boelens J, Claeys G (2015) Direct susceptibility testing by disk diffusion on clinical samples: a rapid and accurate tool for antibiotic stewardship. Eur J Clin Microbiol Infect Dis 34:1207–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coşoveanu A, Axîne O, Iacomi B (2010) Antifungal activity of macroalgae extracts. Scient Pap Univ Agronom Sci Vet Med Bucharest 3:442–447

    Google Scholar 

  • Crasta JP, Raviraja SN, Sridhar RK (1997) Antimicrobial activity of some marine algae of southwest coast of India. Indian J Mar Sci 26:201–205

    Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    CAS  PubMed  Google Scholar 

  • Cruces E, Rojas-Lillo Y, Ramirez-Kushel E, Atala E, López-Alarcón C, Lissi E, Gómez I (2015) Comparison of different techniques for the preservation and extraction of phlorotannins in the kelp Lessonia spicata (Phaeophyceae): assays of DPPH, ORAC-PGR, and ORAC-FL as testing methods. J Appl Phycol 28:573–580

    Google Scholar 

  • Damalas AC, Koutroubas DS (2018) Current status and recent developments in biopesticide use. Agriculture 8:1–6

    Google Scholar 

  • De Corato U, Salimbeni R, De Pretis A, Avella N, Patruno G (2017) Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biol Technol 131:16–30

    Google Scholar 

  • De Felicio R, De Albuquerque S, Young MC, Yokoya NS, Debonsi HM (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769

    PubMed  Google Scholar 

  • de Freitas MB, Stadnik MJ (2012) Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 78:8–13

    Google Scholar 

  • Dewanjee S, Gangopadhyay M, Bhattacharya N, Khanra R, Dua TK (2015) Bioautography and its scope in the field of natural product chemistry. J Pharm Anals 5:75–84

    Google Scholar 

  • Ehteshamul-Haque S, Baloch NG, Sultana V, Ara J, Tariq MR, Athar M (2013) Impact of seaweeds on fluorescent Pseudomonas and their role in suppressing the root disease of soybean and pepper. J Appl Biol Food Qual 86:126–132

    Google Scholar 

  • El Modafar C, Elgadda M, El Boutachfaiti R, Abouraicha E, Zehhar N, Petit E, El Alaoui-Talibi Z, Courtois B, Courtois J (2012) Induction of natural defence accompanied by salicylic acid-dependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci Hortic 138:55–63

    Google Scholar 

  • Esserti S, Smaili A, Rifai LA, Koussa T, Makroum K, Belfaiza M, Kabil EM, Faize L, Burgos L, Alburquerque N, Faize M (2016) Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. J Appl Phycol 29:1081–1093

    Google Scholar 

  • Forests, products and people Ireland’s forest policy – a renewed vision (2013) https://www.agriculture.gov.ie/media/migration/forestry/publicconsultation/forestpolicyreview/ForestPolicyReviewpublicconsult21Jun2013.pdf. Accessed 16 Aug 2016

  • Galal MRH, Salem MW, Naser El-Deen F (2011) Biological control of some pathogenic fungi using marine algae. Res J Microbiol 6:645–657

    Google Scholar 

  • Garcia-Vaquero M, Rajauria G, Tiwari B, Sweeney T, O’Doherty J (2018) Extraction and yield optimisation of fucose, glucans and associated antioxidant activities from Laminaria digitata by applying response surface methodology to high intensity ultrasound-assisted extraction. Mar Drugs 16(8):E257

    PubMed Central  Google Scholar 

  • González de Peredo AV, Vazquez-Espinosa M, Espada-Bellido E, Jimenez-Cantizano A, Ferreiro-Gonzalez M, Amores-Arrocha A, Palma M, Barroso CG, Barbero GF (2018) Development of new analytical microwave-assisted extraction methods for bioactive compounds from Myrtle (Myrtus communis L.). Molecules 23:2992

    Google Scholar 

  • Grzywacz D, Stevenson PC, Mushobozi LM, Belmain S, Wilson K (2014) The use of indigenous ecological resources for pest control in Africa. Food Sec 6:71–86

    Google Scholar 

  • Guedes EA, Araujo MA, Souza AK, de Souza LI, de Barros LD, Maranhao FC, Sant’Ana AE (2012) Antifungal activities of different extracts of marine macroalgae against dermatophytes and Candida species. Mycopathologia 174:223–232

    PubMed  Google Scholar 

  • Guedes EA, de Carvalho CM, Ribeiro Junior KA, Lisboa Ribeiro TF, de Barros LD, de Lima MR, Prado Moura Fde B, Goulart Sant’ana AE (2014) Larvicidal activity against Aedes aegypti and molluscicidal activity against Biomphalaria glabrata of Brazilian marine algae. J Parasitol Res 2014:501328

    PubMed  PubMed Central  Google Scholar 

  • Henriques J, Nóbrega F, Sousa E, Lima A (2015) Morphological and genetic diversity of Biscogniauxia mediterranea associated to Quercus suber in the Mediterranean Basin. Rev Ciên Agrár 38:166–175

    Google Scholar 

  • Hernández-Herrera RM, Virgen-Calleros G, Ruiz-López M, Zañudo-Hernández J, Délano-Frier JP, Sánchez-Hernández C (2014) Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. J Appl Phycol 26:1607–1614

    Google Scholar 

  • Hernández-Ledesma B, Herrero M (2014) Bioactive compounds from marine foods: plant and animal sources. John Wiley & Sons, West Sussex

    Google Scholar 

  • Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes M (ed) Marine bioactive compounds. Springer, Boston, pp 55–98

    Google Scholar 

  • Ibraheem BMI, Hamed MS, Abd Elrhman AA, Farag MF, Abdel-Raouf N (2017) Antimicrobial activities of some brown macroalgae against some soil borne plant pathogens and in vivo management of Solanum melongena root diseases. Aust J Basic Appl Sci 11:157–168

    CAS  Google Scholar 

  • Ivase TJ-P, Nyakuma BB, Ogenyi BU, Balogun AD, Hassan MN (2017) Current status, challenges, and prospects of biopesticide utilization in Nigeria. Agriculture and Environment 9:95–106

    Google Scholar 

  • Jallow MF, Awadh DG, Albaho MS, Devi VY, Thomas BM (2017) Pesticide knowledge and safety practices among farm workers in Kuwait: results of a survey. Int J Environ Res Public Health 14:E430

    Google Scholar 

  • Jayaraj J, Wan A, Rahman M, Punja ZK (2008) Seaweed extract reduces foliar fungal diseases on carrot. Crop Prot 27:1360–1366

    Google Scholar 

  • Jayaraman J, Norrie J, Punja ZK (2011) Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J Appl Phycol 23:353–361

    Google Scholar 

  • Jiang L (2011) Comparison of disk diffusion, agar dilution, and broth microdilution for antimicrobial susceptibility testing of five chitosans. MSc Thesis, Lousiana State University

  • Jimenez E, Dorta F, Medina C, Ramirez A, Ramirez I, Pena-Cortes H (2011) Anti-phytopathogenic activities of macro-algae extracts. Mar Drugs 9:739–756

    PubMed  PubMed Central  Google Scholar 

  • Joana Gil-Chávez G, Villa JA, Fernando Ayala-Zavala J, Basilio Heredia J, Sepulveda D, Yahia EM, González-Aguilar GA (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 12:5–23

    Google Scholar 

  • Kabir Khanzada KA, Shaikh W, Kazi GT, Kabir S, Soofia S (2007) Antifungal activity, elemental analysis and determination of total protein of seaweed, Solieria robusta (Greville) Kylin from the coast of Karachi. Pak J Bot 39:931–937

    Google Scholar 

  • Kadam SU, Tiwari BK, Smyth TJ, O’Donnell CP (2015) Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason Sonochem 23:308–316

    CAS  PubMed  Google Scholar 

  • Kamada T, Phan C-S, Vairappan CS (2018) Neoiriepentaol and nangenyne, halogenated diterpenoid and C15-acetogenin from red alga Laurencia nangii Masuda collected in Borneo. J Appl Phycol 30:3379–3386

    CAS  Google Scholar 

  • Karmann M, Miettinen P, Hontelez J (2016) Forest Stewardship Council indicators: Development by multi-stakeholder process assures consistency and diversity. In. Policy matters 2016: Certification and biodiversity. https://www.iucn.org/sites/dev/files/policy_matters_21_chapter_8_forest_stewardship_council_indicators_development_by_multi-stakeholder_process_assures_consistency_and_diversity.pdf. Accessed 29 Apr 2019

  • Kausalya M, Narasimha RMG (2015) Antimicrobial activity of marine algae. J Algal Biomass Utln 6:78–87

    Google Scholar 

  • Khan AS, Abid M, Hussain F (2017) Antifungal activity of aqueous and methanolic extracts of some seaweeds against common soil-borne plant pathogenic fungi. Pak J Bot 49:1211–1216

    CAS  Google Scholar 

  • Kim MS, Jung J-Y, Kwon N-O, Cha HK, Um H-B, Chung D, Pan H-C (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    CAS  PubMed  Google Scholar 

  • Kim K-H, Yu D, Eom S-H, Kim H-J, Kim D-H, Song H-S, Kim D-M, Kim Y-M (2017) Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans. J Appl Phycol 30:605–609

    Google Scholar 

  • Kolanjinathan KSD (2009) Antibacterial activity of marine macro algae against human pathogens. Recent Res Sci Technol 1:020–022

    Google Scholar 

  • Kulshreshtha G, Borza T, Rathgeber B, Stratton GS, Thomas NA, Critchley A, Hafting J, Prithiviraj B (2016) Red seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down regulate virulence factors of Salmonella enteritidis and induce immune responses in Caenorhabditis elegans. Front Microbiol 7:421

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Singh A (2014) Biopesticides for integrated crop management: environmental and regulatory aspects. J Biofert Biopesticid 5:1

    CAS  Google Scholar 

  • Lah K (2011) Effects of pesticides on human health. In: Toxipedia. http://www.toxipedia.org/display/toxipedia/Effects+of+Pesticides+on+Human+Health. Accessed 19 Feb 2019

  • Kumar R, Shrivastava SK, Chakraborti A (2010) Comparison of broth dilution and disc diffusion method for the antifungal susceptibility testing of Aspergillus flavus. Amer J Biomed Sci. https://doi.org/10.5099/aj100300202:202-208

  • Kumar SN, Nambisan B, Sundaresan A, Mohandas C, Anto JR (2013) Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode. Ann Microbiol 64:209–218

    Google Scholar 

  • Li H, Deng Z, Wu T, Liu W, Loewen S, Tsao R (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 130:928–936

    CAS  Google Scholar 

  • Machado LP, de Carvalho LR, Young MCM, Zambotti-Villela L, Colepicolo P, Andreguetti DX, Yokoya NS (2014a) Comparative chemical analysis and antifungal activity of Ochtodes secundiramea (Rhodophyta) extracts obtained using different biomass processing methods. J Appl Phycol 26:2029–2035

    Google Scholar 

  • Machado LP, Matsumoto ST, Jamal CM, da Silva MB, Centeno Dda C, Colepicolo Neto P, de Carvalho LR, Yokoya NS (2014b) Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi. J Sci Food Agric 94:1739–1744

    CAS  PubMed  Google Scholar 

  • Macpherson MF, Kleczkowski A, Healey JR, Quine CP, Hanley N (2017) The effects of invasive pests and pathogens on strategies for forest diversification. Ecol Model 350:87–99

    Google Scholar 

  • Mandal C, Mandal V, Das A (2015) Essentials of Botanical Extraction. Elsevier Science, San Diego

    Google Scholar 

  • Mani SD, Nagarathnam R (2018) Sulfated polysaccharide from Kappaphycus alvarezii (Doty) Doty ex P.C. Silva primes defense responses against anthracnose disease of Capsicum annuum Linn. Algal Res 32:121–130

    Google Scholar 

  • Manivannan K, Karthikai devi G, Anantharaman P, Balasubramanian T (2011) Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pac J Trop Biomed 1:114–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez JA (2012) Natural fungicides obtained from plants. In: Dhanasekaran D (ed) Fungicides for Plants and Animal Diseases. Rijeka, Intech, pp 1–28

    Google Scholar 

  • McCracken RA (2013) Current and emerging threats to Ireland’s trees from diseases and pests. Irish For 70:36–60

    Google Scholar 

  • McKennedy J, Önenç S, Pala M, Maguire J (2016) Supercritical carbon dioxide treatment of the microalgae Nannochloropsis oculata for the production of fatty acid methyl esters. J Supercrit Fluids 116:264–270

    CAS  Google Scholar 

  • Mei Ling LA, Yasir S, Matanjun P, Abu Bakar FM (2015) Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J Appl Phycol 27:1717–1723

    Google Scholar 

  • Melecchi MI, Peres VF, Dariva C, Zini CA, Abad FC, Martinez MM, Caramao EB (2006) Optimization of the sonication extraction method of Hibiscus tiliaceus L. flowers. Ultrason Sonochem 13:242–250

    CAS  PubMed  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    PubMed  PubMed Central  Google Scholar 

  • Norra I, Aminah A, Suri R (2016) Effects of drying methods, solvent extraction and particle size of Malaysian brown seaweed, Sargassum sp on the total phenolic. Int Food Res J 23:1558–1563

    CAS  Google Scholar 

  • Opgenorth CD, Endo MR (1983) Evidence that antagonistic bacteria suppress Fusarium wilt of celery in neutral and alkaline soils. Phytopathology 73:703–708

    Google Scholar 

  • Pádu D, Rocha E, Gargiulo D, Ramos AA (2015) Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett 14:91–98

    Google Scholar 

  • Panda KS (2012) Screening methods in the study of antimicrobial properties of medicinal plants. Int J Biotechnol Res 2:1–35

    Google Scholar 

  • Pandithurai M, Subbiah M, Vajiravelu S, Selvan T (2015) Antifungal activity of various solvent extracts of marine brown alga Spatoglossum asperum. Int J Pharm Chem 5:277–280

    CAS  Google Scholar 

  • Pasdaran A, Hamedi A, Mamedoy N (2016) Antibacterial and insecticidal activity of volatile compounds of three algae species of Oman Sea. Int J Second Metab 3:66–73

    Google Scholar 

  • Peres FCJ, Retz de Carvalho L, Gonçalez E, Berian SOL, Felicio DJ (2012) Evalution of antifungal activity of seaweed extracts. Ciênc Agrotec, Lavras 36:294–299

    CAS  Google Scholar 

  • Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial Action of Compounds from Marine Seaweed. Mar Drugs 14(3):E52

    PubMed Central  Google Scholar 

  • Ponmari G, Sathishkumar R, Lakshmi PTV (2011) Effect of drying treatment on the contents of antioxidants in Cardiospermum halicacabum Linn. Int J Pharm Bio Sci 2:304–313

    Google Scholar 

  • Puglisi MP, Tan LT, Jensen PR, Fenical W (2004) Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron 60:7035–7039

    CAS  Google Scholar 

  • Raimundo da Fonseca R, Ortiz-Ramírez AF, Cavalcanti ND, Ramos BJC, Teixeira LV, Pedro da Silva Sousa Filho A (2012) Allelopathic potential of extracts the from marine macroalga Plocamium brasiliense and their effects on pasture weed. Aust J Pharm 22:850–853

    CAS  Google Scholar 

  • Rajesh S, Asha A., Kombiah P., Sahayaraj K (2011) Biocidal activity of algal seaweed on insect pest and fungal plant pathogens. National Seminar on Harmful/Benefical Insects of Agricultural Importance. https://doi.org/10.13140/RG.2.1.2226.2887:86-91

  • Ramkissoon A, Ramsubhag A, Jayaraman J (2017) Phytoelicitor activity of three Caribbean seaweed species on suppression of pathogenic infections in tomato plants. J Appl Phycol 29:3235–3244

    Google Scholar 

  • Ravikumar S, Ali SM, Beula MJ (2011) Mosquito larvicidal efficacy of seaweed extracts against dengue vector of Aedes aegypti. Asian Pac J Trop Biomed 1:143–146

    Google Scholar 

  • Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Gosey LL, Odds FC, Rinaldi MG, Sheehan DJ, Warnock DW (2001) Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 14:643–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Righini H, Roberti R, Baraldi E (2018) Use of algae in strawberry management. J Appl Phycol 30:3551–3564

    CAS  Google Scholar 

  • Roberti R, Righini H, Reyes PC (2016) Activity of seaweed and cyanobacteria water extracts against Podosphaera xanthii on zucchini. Ital J Mycol 45:66–77

    Google Scholar 

  • Rocha OP, De Felicio R, Rodrigues AH, Ambrosio DL, Cicarelli RM, De Albuquerque S, Young MC, Yokoya NS, Debonsi HM (2011) Chemical profile and biological potential of non-polar fractions from Centroceras clavulatum (C. Agardh) Montagne (Ceramiales, Rhodophyta). Molecules 16:7105–7114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym 86:1137–1144

    CAS  Google Scholar 

  • Saha M, Goecke F, Bhadury P (2018) Minireview: algal natural compounds and extracts as antifoulants. J Appl Phycol 30:1859–1874

    CAS  PubMed  Google Scholar 

  • Saleh B, Al-Mariri A (2018) Antifungal activity of crude seaweed extracts collected from Lattakia Coast, Syria. J Fish Aquat Sci 13:49–55

    CAS  Google Scholar 

  • Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S (2017) Antifungal activity of aqueous extracts of some dominant Algerian medicinal plants. Biomed Res Int 2017:7526291

    PubMed  PubMed Central  Google Scholar 

  • Salvador-Neto O, Gomes SA, Soares AR, Machado FL, Samuels RI, Nunes da Fonseca R, Souza-Menezes J, Moraes JL, Campos E, Mury FB, Silva JR (2016) Larvicidal potential of the halogenated sesquiterpene (+)-obtusol, isolated from the alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue vector mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae). Mar Drugs 14(2):E20

    PubMed Central  Google Scholar 

  • Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabo I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    CAS  PubMed  Google Scholar 

  • Shobier AH, Abdel Ghani SA, Barakat KM (2016) GC/MS spectroscopic approach and antifungal potential of bioactive extracts produced by marine macroalgae. Egypt J Aquat Res 42:289–299

    Google Scholar 

  • Shukla S (2011) Freeze drying process: a review. Int J Pharm Sci Res 2:3061–3068

    CAS  Google Scholar 

  • Singh D (2014) Advances in plant biopesticides. Springer India, New Delhi

    Google Scholar 

  • Sosa-Hernandez JE, Escobedo-Avellaneda Z, Iqbal HMN, Welti-Chanes J (2018) State-of-the-art extraction methodologies for bioactive compounds from algal biome to meet bio-economy challenges and opportunities. Molecules 23(11):E2953

    PubMed Central  Google Scholar 

  • Stein EM, Colepicolo P, Afonso FAK, Fujii MT (2011) Screening for antifungal activities of extracts of the brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta). Rev Bras Farm 21:290–295

    Google Scholar 

  • Stewart KL (2008) Conventional and novel treatments for control of clubroot disease of brassicas. PhD Thesis, The University of Edinburgh

  • Sujatha K, Mahalakshmi P, Manonmani K (2014) Effect of antifungal activity of seaweed extracts against soil borne pathogens in pulses. Int J Agric Innov Res 3:135–137

    Google Scholar 

  • Sultana V, Ehteshamul-Haque S, Ara J, Athar M (2005) Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra. Int J Environ Sci 2:129–132

    Google Scholar 

  • Sultana V, Ara J, Ehteshamul-Haque S (2008) Supression of root rotting fungi and root rot knot nematode of chili by seaweed and Pseudomonas aeruginosa. J Phytopathol 156:390–395

    Google Scholar 

  • Sultana V, Ehteshamul-Haque S, Ara J, Athar M (2009) Effect of brown seaweeds and pesticides on root rotting fungi and root-knot nematode infecting tomato roots. J Appl Bot Food Qual 83:50–53

    Google Scholar 

  • Sultana V, Baloch NG, Ara J, Ehteshamul-Haque S, Tariq MR, Athar M (2011a) Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual 84:162–168

    CAS  Google Scholar 

  • Sultana V, Baloch NG, Ambreen, Ara J, Tariq RM, Ehteshamul-Haque S (2011b) Comparative efficacy of a red alga Solieria robusta, chemical fertilizers and pesticides in managing the root diseases and growth of soybean. Pak J Bot 43:1–6

    CAS  Google Scholar 

  • Sutton ML, Starzyk JM (1972) Procedure and analysis of a useful method in determining mycelial dry weights from agar plates. Appl Microbiol 24:1011–1012

    PubMed  PubMed Central  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013:762412

    PubMed  PubMed Central  Google Scholar 

  • Tubby KV, Webber JF (2010) Pests and diseases threatening urban trees under a changing climate. Forestry 83:451–459

    Google Scholar 

  • Tyskiewicz K, Konkol M, Roj E (2018) The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 23(10):E2625

    PubMed Central  Google Scholar 

  • Uppal AK, El Hadrami A, Adam LR, Tenuta M, Daayf F (2008) Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biol Control 44:90–100

    Google Scholar 

  • Valentina J, Poonguzhali TV, Josmin L, Nisha LL (2015) Mosquito larvicidal and pupicidal activity of seaweed extracts against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Int J Mosquito Res 2:54–59

    Google Scholar 

  • Vázquez FIA, Sánchez DMC, Delgado GN, Alfonso SMA, Ortega SY, Sánchez CH (2011) Anti-inflammatory and analgesic activities of red seaweed Dichotomaria obtusata. Braz J Pharm Sci 47:111–118

    Google Scholar 

  • Villaverde JJ, Sevilla-Moran B, Sandin-Espana P, Lopez-Goti C, Alonso-Prados JL (2014) Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag Sci 70:2–5

    CAS  PubMed  Google Scholar 

  • Vimala TP, Poonghuzhali TV (2017) In vitro antimicrobial activity of solvent extracts of marine brown alga, Hydroclathrus clathratus (C. Agardh) M. Howe from Gulf of Mannar. J Appl Pharmaceut Sci 7:157–162

    CAS  Google Scholar 

  • Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    CAS  Google Scholar 

  • Wite D, Mattner SW, Porter IJ, Arioli T (2015) The suppressive effect of a commercial extract from Durvillaea potatorum and Ascophyllum nodosum on infection of broccoli by Plasmodiophora brassicae. J Appl Phycol 27:2157–2161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock AB, Bullock MJ, Shore FR, Heard SM, Pereira GM, Redhead J, Ridding L, Dean H, Slepp D, Henrys P, Peyton J, Hulmes S, Hulmes L, Sárospataki M, Saure C, Edwards M, Genersch E, Knäbe S, Pywell FR (2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356:1393–1395

    CAS  PubMed  Google Scholar 

  • Wrona O, Rafinska K, Mozenski C, Buszewski B (2017) Supercritical fluid extraction of bioactive compounds from plant materials. J AOAC Int 100:1624–1635

    CAS  PubMed  Google Scholar 

  • Yamada S, Cao J, Sumita O, Kurasawa K, Kurata H, Oh K, Matsuoka H (1992) Automatic antifungal activity analyzing system on the basis of dynamic growth process of a single hypha. Mycopathologia 118:65–69

    CAS  PubMed  Google Scholar 

  • Ying Z, Han X, Li J (2011) Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem 127:1273–1279

    CAS  PubMed  Google Scholar 

  • Zakaria AN, Ibrahim D, Sulaiman FS, Supardy AN (2011) Assessment of antioxidant activity, total phenolic content and invitro toxicity of Malaysian red seaweed, Acanthophora spicifera. J Chem Pharm Res 3:182–191

    CAS  Google Scholar 

  • Zhang Y, Han J, Mu J, Feng Y, Gu X, Ji Y (2013) Bioactivity and constituents of several common seaweeds. Chin Sci Bull 58:2282–2289

    CAS  Google Scholar 

  • Zhang QW, Lin LG, Ye WC (2018) Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 13:20

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank the Waterford Institute of Technology PhD Scholarship Programme for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma O’ Keeffe.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’ Keeffe, E., Hughes, H., McLoughlin, P. et al. Methods of analysis for the in vitro and in vivo determination of the fungicidal activity of seaweeds: a mini review. J Appl Phycol 31, 3759–3776 (2019). https://doi.org/10.1007/s10811-019-01832-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01832-7

Keywords

Navigation