Skip to main content

Advertisement

Log in

Determination of biokinetic coefficients for nutrient removal from anaerobic liquid digestate by mixed microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Anaerobic digestion is one of the most common methods used to generate energy from renewable sources. However, untreated anaerobic liquid digestate may cause eutrophication if directly discharged into the water bodies due to its high nutrient content. Microalgae can assimilate nutrients especially nitrogen and phosphorous from wastewater for their growth and produce valuable biomass. In this study, batch experiments were carried out to investigate the biokinetic coefficients for nutrient removal of mixed microalgae grown on anaerobic liquid digestate by Michaelis–Menten rate expression. The initial NH3-N concentration was varied between 18.6 and 87.1 mg L−1, while initial PO4-P concentration was between 1.85 and 6.88 mg L−1, which corresponds to 2%, 5%, 7%, and 10% dilution ratio of anaerobic digestate. According to the yield results (mg chl a mg−1 nutrient), mixed microalgae uptake 10 times more nitrogen than phosphorus. Biokinetic coefficients were determined as kN = 2.48 mg NH3-N mg−1 chl a day−1, KmN = 29.3 mg L−1, YN = 0.45 mg chl a mg−1 NH3-N for nitrogen; and kP = 0.21 mg PO4-P mg−1 chl a day−1, KmP = 2.94 mg L−1, YP = 5.03 mg chl a mg−1 PO4-P for phosphorus. The highest chlorophyll production (39 mg L−1 or 3.31 mg L−1 day−1) was observed at the highest dilution ratio of 10%. Moreover, the highest dilution resulted in highest biomass (1.25 g L−1) despite of dark, high ammonicial, and particulate rich wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullahi YA, Akunna JC, White NA, Hallett PD, Wheatley R (2008) Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresour Technol 99:8631–8636

    Article  CAS  PubMed  Google Scholar 

  • Adesanya VO, Davey MP, Scott SA, Smith AG (2014) Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresour Technol 157:293–304

    Article  CAS  PubMed  Google Scholar 

  • Alburquerque JA, de la Fuente C, Ferrer-Costa A, Carrasco L, Cegarra J, Abad M, Bernal MP (2012) Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 40:181–189

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Ayre JM, Moheimani NR, Borowitzka MA (2017) Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res 24:218–226

    Article  Google Scholar 

  • Barsanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology. CRC Press

  • Bellinger EG, Sigee DC (2015) Freshwater algae: identification and use as bioindicators. John Wiley & Sons

  • Bjornsson WJ, Nicol RW, Dickinson KE, McGinn PJ (2013) Anaerobic digestates are useful nutrient sources for microalgae cultivation: functional coupling of energy and biomass production. J Appl Phycol 25:1523–1528

    Article  CAS  Google Scholar 

  • Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Bouwer EJ (2015) Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 99:6139–6154

    Article  CAS  PubMed  Google Scholar 

  • Bohutskyi P, Kligerman DC, Byers N, Nasr LK, Cua C, Chow S, Bouwer EJ (2016) Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater. Algal Res 19:278–290

    Article  Google Scholar 

  • Cai T, Park SY, Racharaks R, Li Y (2013) Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Appl Energy 108:486–492

    Article  CAS  Google Scholar 

  • Cheng J, Xu J, Huang Y, Li Y, Zhou J, Cen K (2015) Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Bioresour Technol 177:240–246

    Article  CAS  PubMed  Google Scholar 

  • Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26

    Article  Google Scholar 

  • Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358

    Article  Google Scholar 

  • EPA (2002) Health risks from microbial growth and biofilms in drinking water distribution systems. Office of Water (4601M) Office of Ground Water and Drinking Water Distribution System White Paper 3–10, US Environmental Protection Agency

  • Federation WE, American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC

    Google Scholar 

  • Franchino M, Tigini V, Varese GC, Sartor RM, Bona F (2016) Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Sci Total Environ 569:40–45

    Article  CAS  PubMed  Google Scholar 

  • Franchino M, Comino E, Bona F, Riggio VA (2013) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92:738–744

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Camejo J, Barat R, Pachés M, Murgui M, Seco A, Ferrer J (2018) Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environ Technol 39:503–515

    Article  CAS  PubMed  Google Scholar 

  • Hajar HAA, Riefler RG, Stuart BJ (2017) Cultivation of Scenedesmus dimorphus using anaerobic digestate as a nutrient medium. Bioprocess Biosyst Eng 40:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Hajar HAA, Riefler RG, Stuart BJ (2016) Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans. Env Eng Res 21:265–275

    Article  Google Scholar 

  • Haraldsen TK, Andersen U, Krogstad T, Sørheim R (2011) Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manag Res 29:1271–1276

    Article  CAS  PubMed  Google Scholar 

  • Huy M, Kumar G, Kim HW, Kim SH (2018) Photoautotrophic cultivation of mixed microalgae consortia using various organic waste streams towards remediation and resource recovery. Bioresour Technol 247:576–581

    Article  CAS  PubMed  Google Scholar 

  • Ji F, Zhou Y, Pang A, Ning L, Rodgers K, Liu Y, Dong R (2015) Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresour Technol 184:116–122

    Article  CAS  PubMed  Google Scholar 

  • Kalana ULD (2015) Assessment of the growth kinetics of selected microalgae species in synthetic wastewater for the production of biodiesel. University of Peradeniya. (doctoral dissertation)

  • Koutra E, Grammatikopoulos G, Kornaros M (2017) Microalgal post-treatment of anaerobically digested agro-industrial wastes for nutrient removal and lipids production. Bioresour Technol 224:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kumar MS, Miao ZH, Wyatt SK (2010) Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour Technol 101:6012–6018

    Article  CAS  PubMed  Google Scholar 

  • Ledda C, Schievano A, Scaglia B, Rossoni M, Fernández FGA, Adani F (2016) Integration of microalgae production with anaerobic digestion of dairy cattle manure: an overall mass and energy balance of the process. J Cleaner Produc 112:103–112

    Article  CAS  Google Scholar 

  • Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 35:40–49

    Article  CAS  Google Scholar 

  • Magrí A, Béline F, Dabert P (2013) Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing—an overview. J Environ Manag 131:170–184

    Article  CAS  Google Scholar 

  • Marazzi F, Sambusiti C, Monlau F, Cecere SE, Scaglione D, Barakat A, Ficara E (2017) A novel option for reducing the optical density of liquid digestate to achieve a more productive microalgal culturing. Algal Res 24:19–28

    Article  Google Scholar 

  • Massa M, Buono S, Langellotti AL, Castaldo L, Martello A, Paduano A, Fogliano V (2017) Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima. New Biotech 36:8–16

    Article  CAS  Google Scholar 

  • Mayers JJ, Nilsson AE, Albers E, Flynn KJ (2017) Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp.—impact on growth, biochemical composition and the potential for cost and environmental impact savings. Algal Res 26:275–286

    Article  Google Scholar 

  • Park J, Jin HF, Lim BR, Park KY, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101:8649–8657

    Article  CAS  PubMed  Google Scholar 

  • Prajapati SK, Kumar P, Malik A, Vijay VK (2014) Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour Technol 158:174–180

    Article  CAS  PubMed  Google Scholar 

  • Proschold T, Leliaert F (2007) Systematics of the green algae: conflict of classic and modern approaches. Systematics Association Special Volume 75:123

  • Saidu H, Jamaluddin H, Mohamad SE (2017) Nutrient removal and biokinetic study of freshwater microalgae in palm oil mill effluent (POME). Indian J Sci Technol 10(24):1–10

    Article  CAS  Google Scholar 

  • Salama ES, Kurade MB, Abou-Shanab RA, El-Dalatony MM, Yang IS, Min B, Jeon BH (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energy Rev 79:1189–1211

    Article  CAS  Google Scholar 

  • Salgueiro JL, Perez L, Maceiras R, Sanchez A, Cancela A (2016) Bioremediation of wastewater using Chlorella vulgaris microalgae: phosphorus and organic matter. Int J Environ Res 10:465–470

    CAS  Google Scholar 

  • Serejo ML, Posadas E, Boncz MA, Blanco S, García-Encina P, Muñoz R (2015) Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ Sci Technol 49:3228–3236

    Article  CAS  PubMed  Google Scholar 

  • Shin DY, Cho HU, Utomo JC, Choi YN, Xu X, Park JM (2015) Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour Technol 184:215–221

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Reynolds DL, Das KC (2011) Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour Technol 102:10841–10848

    Article  CAS  PubMed  Google Scholar 

  • Skadsen J, Sanford L (1996) The effectiveness of high pH for control of nitrification and the impact of ozone on nitrification control. In proc. 1996 AWWA water quality technology conference

  • Tao R, Kinnunen V, Praveenkumar R, Lakaniemi A-M, Rintala JA (2017) Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. J Appl Phycol 29:2845–2856

    Article  CAS  Google Scholar 

  • Travieso L, Benítez F, Sánchez E, Borja R, Leon M, Raposo F, Rincon B (2008) Performance of a laboratory-scale microalgae pond for secondary treatment of distillery wastewaters. Chem Biochem Eng Quart 22:467–473

    CAS  Google Scholar 

  • Uggetti E, Sialve B, Latrille E, Steyer JP (2014) Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour Technol 152:437–443

    Article  CAS  PubMed  Google Scholar 

  • Walker L, Charles W, Cord-Ruwisch R (2009) Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour Technol 100:3799–3807

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kuo-Dahab WC, Dolan S, Park C (2014) Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour Technol 154:131–137

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010a) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  PubMed  Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotech 34:264–275

    Article  CAS  Google Scholar 

  • Xin C, Addy MM, Zhao J, Cheng Y, Cheng S, Mu D, Ruan R (2016) Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study. Bioresour Technol 211:584–593

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Zheng Z (2013) Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp. Bioresour Technol 139:292–299

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cheng J, Pei H, Pan J, Jiang L, Hou Q, Han F (2018) Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renew Energy 115:276–287

    Article  CAS  Google Scholar 

  • Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, Zhao Y (2014) Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour Technol 156:322–328

    Article  CAS  PubMed  Google Scholar 

  • Zieliński M, Dębowski M, Szwaja S, Kisielewska M (2018) Anaerobic digestion effluents (ADEs) treatment coupling with Chlorella sp. microalgae production. Water Environ Res 90:155–163

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Doğukan Tunay for his endless help and support.

Funding

Financial support was received from Scientific and Technological Research Council of Turkey (TUBITAK)—Project no. 115Y589.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hande Ermis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermis, H., Altinbas, M. Determination of biokinetic coefficients for nutrient removal from anaerobic liquid digestate by mixed microalgae. J Appl Phycol 31, 1773–1781 (2019). https://doi.org/10.1007/s10811-018-1671-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1671-3

Keywords

Navigation