Skip to main content
Log in

Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The purpose of this study was to analyze the effects of exogenous sodium acetate on astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage. Five or 10 mM sodium acetate increased astaxanthin contents more than two-fold as compared with that in cells without sodium acetate after 6 days of incubation, indicating that exogenous sodium acetate accelerated astaxanthin accumulation at the non-motile stage significantly. Addition of sodium acetate inhibited the chlorophyll fluorescence parameters (ΦPSII, Fv′/Fm′, and qL) as well as photosynthetic rates, indicating that exogenous sodium acetate suppressed photosynthetic activity. However, additional sodium acetate increased respiratory rates. It can be speculated that the enhanced respiration plays an important role in the acceleration of astaxanthin accumulation in the presence of sodium acetate, because acetate can be utilized by the respiratory tricarboxylic acid cycle to generate the carbon skeletons and NAD(P)H for astaxanthin synthesis. Moreover, the level of photoinhibition decreased after adding sodium acetate, which is indicated by the fact that the decrease of the Fv/Fm value from predawn to midday declined on day 4 and day 6. NPQ increased significantly with additional sodium acetate on day 4 and day 6, indicating that additional sodium acetate induced a mechanism to protect algal cells against photoinhibition. Taken together, exogenous sodium acetate enhances astaxanthin accumulation and the photoprotection capacity of H. pluvialis at the non-motile stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Becker HM, Hirnet D, Fecher-Trost C, Sultemeyer D, Deitmer JW (2005) Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. J Biol Chem 280:39882–39889

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis, 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304

    Article  CAS  Google Scholar 

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Systems Biol 3:1–14

    Article  CAS  Google Scholar 

  • Göksan T, Ak İ, Şevket G (2010) An alternative approach to the traditional mixotrophic cultures of Haematococcus pluvialis Flotow (Chlorophyceae). J Microbiol Biotechnol 20:1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Hagen C, Grünewald K, Xyländer M, Rothe E (2001) Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. J Appl Phycol 13:79–87

    Article  Google Scholar 

  • Hong SJ, Lee CG (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12:165–173

    Article  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

    Article  CAS  PubMed  Google Scholar 

  • Jiang CD, Gao HY, Zou Q, Jiang GM, Li LH (2004) Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. Env Exp Bot 55:87–96

    Article  CAS  Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  • Johnson X, Alric J (2012) Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. J Biol Chem 287:26445–26452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke J, Behal RH, Back SL, Nikolau BJ (2000) The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol 123:497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DK, Hong SJ, Bae JH, Yim N, Jin E, Lee C-G (2011) Transcriptomic analysis of Haematococcus lacustris, during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol Bioprocess Eng 16:698–705

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, Nagai S (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J Ferment Bioeng 74:17–20

    Article  CAS  Google Scholar 

  • Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin M, Oliver DJ (2008) The role of acetyl-coenzyme A synthetase in Arabidopsis. Plant Physiol 147:1822–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JG, Yin MY, Zhang JP, Liu W, Meng ZC (2002) Dynamic changes of inorganic nitrogen and astaxanthin accumulation in Haematococcus pluvialis. Chin J Oceanol Limnol 20:358–364

    Article  CAS  Google Scholar 

  • Liu JG, Li QQ, Liu Q, He M, Zhang L, Liu YD, Ding Y, Zhang Z, Lin W, Song P, Li L, Huang Y, Han C (2014) Screening of unicellular microalgae for biofuels and bioactive products and development of a pilot platform. Algol Stud 145:99–117

    Article  Google Scholar 

  • Masojídek J, Torzillo G, Kopecký J, Koblížek M, Nidiaci L, Komenda A, Lukavska A, Sacchi A (2000) Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J Appl Phycol 12:417–426

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    Article  CAS  PubMed  Google Scholar 

  • Orosa M, Franqueira D, Cid A, Albade J (2001) Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol Lett 23:373–378

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FM, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Scibilia L, Girolomoni L, Berteotti S, Alboresi A, Ballottari M (2015) Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res 12:170–181

    Article  Google Scholar 

  • Steinbrenner J, Linden H (2000) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin biosynthesis in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817

    Article  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Molec Biol 52:343–356

    Article  CAS  Google Scholar 

  • Sun YH, Liu JG, Zhang XL, Lin W (2008) Strain H 2-419-4 of Haematococcus pluvialis induced by ethyl methanesulphonate and ultraviolet radiation. Chin J Oceanol Limnol 26:152–156

    Article  Google Scholar 

  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Guan B, Kong Q, Duan L (2018) A semi-continuous cultivation method for Haematococcus pluvialis from non-motile cells to motile cells. J Appl Phycol 30:773–781

    Article  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Phil Trans Roy Soc B 355:1517–1529

    Article  CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2002) Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl Microbiol Biotechnol 58:813–822

    Article  CAS  PubMed  Google Scholar 

  • Zhang CH, Liu JG, Zhang LT (2017a) Cell cycles and proliferation patterns in Haematococcus pluvialis. Chin J Oceanol Limnol 35:1205–1211

    Article  Google Scholar 

  • Zhang CH, Zhang LT, Liu JG (2016b) The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae). Plant Physiol Biochem 107:75–81

    Article  CAS  PubMed  Google Scholar 

  • Zhang LT, He ML, Liu JG, Li L (2015) Role of the mitochondrial alternative oxidase pathway in hydrogen photoproduction in Chlorella protothecoides. Planta 241:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Zhang LT, Li L, He ML, Liu J (2016a) The role of photorespiration during H2 photoproduction in Chlorella protothecoides under nitrogen limitation. Plant Cell Rep 35:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zhang LT, Su F, Zhang CH, Gong F, Liu J (2017b) Changes of photosynthetic behaviors and photoprotection during cell transformation and astaxanthin accumulation in Haematococcus pluvialis grown outdoors in tubular photobioreactors. Int J Molec Sci 18:33

    Article  CAS  Google Scholar 

  • Zhang LT, Zhang ZS, Gao HY, Xue ZC, Yang C, Meng XL, Meng QW (2011) Mitochondrial alternative oxdiase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. Physiol Plant 143:396–407

    Article  CAS  PubMed  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin eaters. J Phycol 38:325–331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. John van der Meer (Pan-American Marine Biotechnology Association) for his English editing.

Contributions

Chunhui Zhang and Jianguo Liu designed the study and wrote the manuscript; Chunhui Zhang and Litao Zhang performed the experiments and analyzed the data. All authors read and approved the manuscript.

Funding

This work was financial supported by National Natural Science Foundation of China (Nos. 31572639, U1706209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, L. & Liu, J. Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage. J Appl Phycol 31, 1001–1008 (2019). https://doi.org/10.1007/s10811-018-1622-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1622-z

Keywords

Navigation