Skip to main content
Log in

Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The red seaweeds are generally known to have a high content of polysaccharides and low content of lignin. They can be used as a bioethanol feedstock and to produce biochemicals. This study was conducted to examine the pretreatment conditions to improve the production of fermentable sugars and by-products from Gracilaria fisheri and Gracilaria. tenuistipitata. The algal materials were gathered from earthen pond cultivation. The pretreatment was conducted at different concentrations of H2SO4 (0.2–1 M) and time (30–150 min) at 95 °C. The proximate composition and contents of glucose, galactose, levulinic acid, and 5-hydroxymethylfurfural (5-HMF) were analyzed. Our results showed high carbohydrate content of 63.01 ± 0.47 g carbohydrate (100 g TS)−1 for G. fisheri and 59.07 ± 0.43 g carbohydrate (100 g TS)−1 for G. tenuistipitata. The optimal pretreatment with 1 M of H2SO4 at 95 °C for 150 min resulted in high concentrations of sugars in G. fisheri (7.86 g L−1 glucose, 8.37 g L−1 galactose) compared to G. tenuistipitata (3.15 g L−1 glucose, 5.75 g L−1 galactose). The pretreatment of the algae resulted in concentrations of 5-HMF for G. fisheri and G. tenuistipitata of 1.55 and 1.42 g L−1, respectively. The levulinic acid concentration was 3.66 g L−1 for G. fisheri and 6.12 g L−1 for G. tenuistipitata. Gracilaria fisheri was more susceptible to the sulfuric acid hydrolysis compared to G. tenuistipitata. Our study revealed that the acid hydrolysis of G. fisheri and G. tenuistipitata can improve the yield of sugars to produce bioethanol feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anonymous (2017a) Energy situation in Thailand: January-December 2017. Department of Alternative Energy Development and Efficiency, Ministry of Energy, Bangkok, 5 pp (in Thai)

  • Anonymous (2017b) Report of ethanol situation price in Thailand: quarter 4/2017. Bank of Thailand, Bangkok, 8 pp (in Thai)

  • AOAC International (2005) Official methods of analysis of AOAC International, 18th edn. AOAC International, Gaithersburg

  • Benjama O, Masniyom P (2012) Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in southern Thailand. Songklanakarin. J Sci Technol 34:223–230

    CAS  Google Scholar 

  • Chen Y-W, Lee H-V, Juan J-C, Phang S-M (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219

    Article  CAS  Google Scholar 

  • Chirapart A, Munkit J, Lewmanomont K (2006) Changes in yield and quality of agar from the agarophytes, Gracilaria fisheri and G. tenuistipitata var. liui cultivated in earthen ponds. Kasetsart J (Nat Sci) 40:529–540

    Google Scholar 

  • Chirapart A, Praiboon J, Puangsombat P, Pattanapon C, Nunraksa N (2014) Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol 26:979–986

    Article  CAS  Google Scholar 

  • Cho H, Ra C-H, Kim S-K (2014) Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts. J Microbiol Biotechnol 24:264–269

    Article  CAS  Google Scholar 

  • Chynoweth DP (2002) Review of biomethane from marine biomass. A report prepared for Tokyo Gas Company. In: Ltd

    Google Scholar 

  • Ciepiela GA, Godlewska A, Jankowska J (2016) The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition. Environ Sci Pollut Res 23:2301–2307

    Article  CAS  Google Scholar 

  • Craigie JS, Wen ZC, van der Meer JP (1984) Interspecific, intraspecific and nutritionally determined variations in the composition of agars from Gracilaria spp. Bot Mar 27:55–61

    Article  CAS  Google Scholar 

  • Feng D, Liu H, Li F, Jiang P, Qin S (2011) Optimization of dilute acid hydrolysis of Enteromorpha. Chin J Oceanol Limnol 29:1243–1248

    Article  CAS  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagent, procedures and some applications). Agric. Handbook, No. 379, ARS-USDA, Washington, DC

  • Graciela SD, Elisabete B, João ON, Sidney P, Sergio OL (2011) Gross chemical profile and calculation of nitrogen-to-protein conversion factors for five tropical seaweed. Am J Plant Sci 2:287–296

    Article  Google Scholar 

  • Herrera A, Téllez-Luis SJ, González-Cabriales JJ, Ramı́rez M, Vázquez JA (2004) Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. J Food Eng 63:103–109

    Article  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  • Hong I-K, Jeon H, Lee S-B (2014) Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem 20:2687–2691

    Article  CAS  Google Scholar 

  • Jeong GT, Park DH (2010) Production of sugar and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161:41–52

    Article  CAS  Google Scholar 

  • Jiang R, Ingle KN, Golberg A (2016) Macroalgae (seaweed) for liquid transportation biofuel production: what is next? Algal Res 14:48–57

    Article  Google Scholar 

  • Kim JK, Yarish C (2014) Development of a sustainable land-based Gracilaria cultivation system. Algae 29:217–225

    Article  Google Scholar 

  • Kim JK, Yarish C, Hwang EK, Park M, Kim Y (2017) Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1–13

    Article  CAS  Google Scholar 

  • Kim SW, Hong C-H, Jeon S-W, Shin H-J (2015) High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour Technol 196:634–641

    Article  CAS  Google Scholar 

  • Lahaye M, Rochas C, Yaphe W (1986) A new procedure for determining the heterogeneity of agar polymers in the cell wall of Gracilaria spp. (Gracilariaceae, Rhodophyta). Can J Bot 64:579–585

    Article  CAS  Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524

    Article  CAS  Google Scholar 

  • McDermid KJ, Stuercke B, Balazs GH (2007) Nutritional composition of marine plants in the diet of the green sea turtle (Chelonia mydas) in the Hawaiian Islands. Bull Mar Sci 81:55–71

    Google Scholar 

  • Meinita NDM, Jeong GT, Hong YK (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35:123–128

    Article  CAS  Google Scholar 

  • Meinita MDN, Marhaeni B, Winanto T, Setyaningsih D, Hong Y-K (2015) Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J Ind Eng Chem 27:108–114

    Article  CAS  Google Scholar 

  • Munier M, Dumay J, Morançais M, Jaouen P, Fleurence J (2013) Variation in the biochemical composition of the edible seaweed Grateloupia turuturu Yamada harvested from two sampling sites on the Brittany Coast (France): the influence of storage method on the extraction of the seaweed pigment R-phycoerythrin. J Chem 2013:1–8

    Article  Google Scholar 

  • Narasimman S, Murugaiyan K (2012) Proximate composition of certain selected marine macro-algae form Mandapam coastal region (Gulf of Mannar), southeast coast of Tamil Nadu. Int J Pharm Biol Arch 3:918–921

  • Norziah MH, Ching CY (2000) Nutritional composition of edible seaweed Gracilaria changii. Food Chem 68:69–76

    Article  CAS  Google Scholar 

  • Nunraksa N, Praiboon J, Puangsombat P, Chirapart A (2015) Effects of hydrochloric acid pretreatment on ethanol yield of the agarophyte, Gracilaria tenuistipitata. KU Fish Res Bull 39(1):38–47

    Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff M, Paul GS, McCormack R, Kyriazis J, Krueger T (2008) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies 1:41–78

    Article  Google Scholar 

  • Praiboon J, Chirapart A, Akakabe A, Bhumibhamond O, Kajiwara T (2006) Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci Asia 32(suppl 1):11–17

    Article  Google Scholar 

  • Ra CH, Choi JG, Kang C-H, Sunwoo IY, Jeong G-T, Kim S-K (2015) Thermal acid hydrolysis pretreatment, enzymatic saccharification and ethanol fermentation from red seaweed, Gracilaria verrucosa. Microbiol Biotechnol Lett 43:9–15

    Article  CAS  Google Scholar 

  • Raspolli Galletti, AM, Antonetti C, De Luise V, Licursi D, di Nasso NN (2012) Levulinic acid production from waste biomass. BioResources 7:1824–1835

  • Robic A, Sassi J-F, Dion P, Lerat Y, Lahaye M (2009) Seasonal variability of physico-chemical and rheological properties of ulvan from two Ulva species (Chlorophyta) of Brittany coast. J Phycol 45:962–973

    Article  CAS  Google Scholar 

  • Ruangchuay R, Lueangthuvapranit C, Nuchaikaew M (2010) Cultivation of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta) in abandoned shrimp ponds along the coast of Pattani Bay, southern Thailand. Algal Resour 3:185–192

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bio Resour 2:472–499

    CAS  Google Scholar 

  • Usov AI (2011) Polysaccharides of the red algae. Adv Carbohydr Chem Biochem 65:115–217

    Article  CAS  Google Scholar 

  • Wackett PL (2011) Engineering microbes to produce biofuels. Curr Opin Biotechnol 22:388–393

    Article  CAS  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang D-J, Bae H-J (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660

    Article  CAS  Google Scholar 

  • Yarnpakdee S, Benjakul S, Kingwascharapong P (2015) Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocoll 51:217–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Graduate Scholarship “72 years Scholarship Kasetsart University.” The authors wish to thank Prof. Dr. Rapeeporn Ruangchuay and the Surat Thani Coastal Fisheries Research and Development Center for kindly supporting the Gracilaria samples. Special thanks to anonymous reviewers whose remarks helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anong Chirapart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunraksa, N., Rattanasansri, S., Praiboon, J. et al. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds. J Appl Phycol 31, 683–690 (2019). https://doi.org/10.1007/s10811-018-1552-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1552-9

Keywords

Navigation