Skip to main content

Advertisement

Log in

Kinetic modeling of mixotrophic growth of Chlorella vulgaris as a new feedstock for biolubricant

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

As a new interest for biodegradable non-hazardous biolubricant from renewable resources, microalgae lipid is suggested as a new feedstock by introducing the microalgae-based lubricants. Chlorella vulgaris was successfully grown in a cheap substrate-based mixotrophic medium. The kinetic modeling of microalgae growth, lipid production, and substrate consumption was carried out in optimum conditions of biomass productivity and lipid production to enhance microalgae lipid for biolubricant production. Designed models have good compatibility with more than 95 % confidence level when compared to the cultivation system. Validation of the models with additional experiments confirmed the accuracy of the models to predict new conditions. The highest biomass concentration of C. vulgaris was 2.9 g L−1 with a lipid content of 30 % of dry weight. The model proposed for lipid production indicated that the lipid was produced simultaneous with growth. Microalgae lipid had sufficient lubricating property showing that this microalgal lipid could be used as potential feedstock for biolubricant production.

Kinetic modeling of mixotrophic growth of Chlorella vulgaris was carried out in optimum conditions of growth parameters. Microalgae lipid was suggested as a new feedstock for biolubricants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66

    Article  CAS  PubMed  Google Scholar 

  • Adesanya VO, Davey MP, Scott SA, Smith AG (2014) Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresour Technol 157:293–304

    Article  CAS  PubMed  Google Scholar 

  • Barbosa MJ, Hoogakker J, Wijffels RH (2003) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20:115–123

    Article  CAS  PubMed  Google Scholar 

  • Bitaubé Pérez E, Caro Pina I, Pérez Rodríguez L (2008) Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J 40:520–525

    Article  Google Scholar 

  • Cavalcante IM, Rocha NRC, Maier ME, de Lima APD, Andrade Neto DM, de Brito DHA, Petzhold CL, Schanz MTGF, Ricardo NMPS (2014) Synthesis and characterization of new esters of oleic acid and glycerol analogues as potential lubricants. Ind Crop Prod 62:453–459

    Article  CAS  Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34:461–465

    Article  CAS  Google Scholar 

  • Dörmő N, Bélafi-Bakó K, Bartha L, Ehrenstein U, Gubicza L (2004) Manufacture of an environmental-safe biolubricant from fusel oil by enzymatic esterification in solvent-free system. Biochem Eng J 21(3):229–234

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol Bioeng 108:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Gharibzahedi SMT, Razavi SH, Mousavi M (2013) Kinetic analysis and mathematical modeling of cell growth and canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1 on waste molasses hydrolysate. RSC Adv 3:23495–23502

    Article  CAS  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253

    Article  CAS  Google Scholar 

  • Kamalakar K, Rajak AK, Prasad RBN, Karuna MSL (2013) Rubber seed oil-based biolubricant base stocks: a potential source for hydraulic oils. Ind Crop Prod 51:249–257

    Article  CAS  Google Scholar 

  • Kleinaitė E, Jaška V, Tvaska B, Matijošytė I (2014) A cleaner approach for biolubricant production using biodiesel as a starting material. J Clean Prod 75:40–44

    Article  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Kumar K, Dasgupta CN, Das D (2014) Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour Technol 167:358–366

    Article  CAS  PubMed  Google Scholar 

  • Leesing R, Sihawong S, Duangkeaw N (2013) Producing of microalgal lipid by isolated microalgae under photoautotrophic and heterotrophic cultivations. APCBEE Procedia 7:48–53

    Article  CAS  Google Scholar 

  • Liang Y (2013) Producing liquid transportation fuels from heterotrophic microalgae. Appl Energy 104:860–868

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD (ed) Methods Enzymol., Volume 148. Academic Press, pp 350–382

  • Lowrey J, Brooks M, McGinn P (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol 27:1485–1498

    Article  CAS  Google Scholar 

  • Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:514–515

    Article  CAS  Google Scholar 

  • Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B (2015) Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Prep Biochem Biotechnol. doi:10.1080/10826068.2015.1031398

    Google Scholar 

  • Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B (2016) Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol 46:150–156

    Article  CAS  PubMed  Google Scholar 

  • Moya MJ, Sánchez-Guardamino ML, Vilavella A, Barberà E (1997) Growth of Haematococcus lacustris: a contribution to kinetic modelling. J Chem Technol Biotechnol 68:303–309

    Article  CAS  Google Scholar 

  • Naidir F, Yunus R, Rashid U, Masood H, Ghazi TIM, Ramli I (2012) The kinetics of epoxidation of trimethylolpropane ester. Eur J Lipid Sci Technol 114:816–822

    Article  CAS  Google Scholar 

  • Najafi G, Ghobadian B, Yusaf TF (2011) Algae as a sustainable energy source for biofuel production in Iran: a case study. Renew Sust Energ Rev 15:3870–3876

    Article  CAS  Google Scholar 

  • Nor Halaliza Alias RY, Idris A, Omar R (2009) Effects of additives on oxidation characteristics of palm oilbased trimethylolpropane ester in hydraulics applications. Eur J Lipid Sci Technol 111:368–375

    Article  Google Scholar 

  • Ogbonna J, Tanaka H (2000) Light requirement and photosynthetic cell cultivation—development of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218

    Article  Google Scholar 

  • Orus IM, Martinez F (1991) Chlorophyll a/b ratio and thylakoid stacking modification in response to glucose in Chlorella vulgaris UAM 101. Biochem Physiol Pflanz 187:197–202

    Article  CAS  Google Scholar 

  • Paz B, Vázquez JA, Riobó P, Stolte W, Franco JM (2009) Mathematical description of yessotoxin production by Protoceratium reticulatum in culture. Harmful Algae 8:730–735

    Article  CAS  Google Scholar 

  • Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158

    Article  CAS  PubMed  Google Scholar 

  • Sripada PK, Sharma RV, Dalai AK (2013) Comparative study of tribological properties of trimethylolpropane-based biolubricants derived from methyl oleate and canola biodiesel. Ind Crop Prod 50:95–103

    Article  CAS  Google Scholar 

  • Wang E, Ma X, Tang S, Yan R, Wang Y, Riley WW, Reaney MJT (2014) Synthesis and oxidative stability of trimethylolpropane fatty acid triester as a biolubricant base oil from waste cooking oil. Biomass Bioenergy 66:371–378

    Article  Google Scholar 

  • Wong Y-S, Teng TT, Ong S-A, Morad N, Rafatullah M (2014) Suspended growth kinetic analysis on biogas generation from newly isolated anaerobic bacterial communities for palm oil mill effluent at mesophilic temperature. RSC Adv 4:64659–64667

    Article  CAS  Google Scholar 

  • Xie J, Zhang Y, Li Y, Wang Y (2001) Mixotrophic cultivation of Platymonas subcordiformis. J Appl Phycol 13:343–347

    Article  Google Scholar 

  • Yang J, Rasa E, Tantayotai P, Scow KM, Yuan H, Hristova KR (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Shi D, Cai Z, Cong W, Ouyang F (2011) Growth and physiological features of cyanobacterium Anabaena sp. strain PCC 7120 in a glucose-mixotrophic culture. Chin J Chem Eng 19:108–115

    Article  CAS  Google Scholar 

  • Zhang XW, Zhang YM, Chen F (1998) Kinetic models for phycocyanin production by high cell density mixotrophic culture of the microalga Spirulina platensis. J Ind Microbiol Biotechnol 21:283–288

    Article  CAS  Google Scholar 

  • Zhang XW, Zhang YM, Chen F (1999) Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem 34:477–481

    Article  CAS  Google Scholar 

  • Zhang D, Yu Y, Li C, Chai C, Liu L, Liu J, Feng Y (2015) Factors affecting microalgae harvesting efficiencies using electrocoagulation-flotation for lipid extraction. RSC Adv 5:5795–5800

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kalbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Mirzaie, M.A., Kalbasi, M., Ghobadian, B. et al. Kinetic modeling of mixotrophic growth of Chlorella vulgaris as a new feedstock for biolubricant. J Appl Phycol 28, 2707–2717 (2016). https://doi.org/10.1007/s10811-016-0841-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0841-4

Keywords

Navigation