Skip to main content
Log in

Optimization of entrapment efficiency and evaluation of nutrient removal (N and P) of Synechococcus elongatus in novel core-shell capsules

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Removal of nitrogen and phosphorous by immobilized microalgae is an advantageous approach for wastewater treatment. Although immobilized microalgae cells remain viable to remove nutrients for several weeks, early leakage of cells because of deterioration of the capsules prevents further use of the immobilized microalgae. This study aimed at increasing the entrapment efficiency of Synechococcus elongatus by core-shell capsules of alginate (as the core) and 2-hydroxyethyl methacrylate (HEMA)-poly(ethylene glycol) methyl ether methacrylate (PEGMA) (as the shell). Cyanobacteria cells were immobilized into: 2 % alginate-1 % CaCl2, 2 % alginate-2 % CaCl2 and 4 % alginate-2 % CaCl2, and submerged into HEMA-PEGMA solution for: 1, 5, or 10 min. A liquid and transparent (93 % transparency) HEMA-PEGMA solution was obtained and used to form a shell over the alginate matrix. Capsules with a shell formed after 10 min of contact with HEMA-PEGMA increased four times (22 days) the cell entrapment efficiency relative to uncoated capsules, independently of alginate or CaCl2, while keeping cells metabolically active and able to remove nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-May B (2006) Inmovilización de células de la cianobacteria Synechococcus sp. para remover nutrientes de efluentes acuícolas. PhD Thesis. Departamento de Acuicultura. Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada Baja California, México.

  • Aguilar-May B, Sánchez-Saavedra MP (2009) Growth and removal of nitrogen and phosphorous by free-living and chitosan-immobilized cells of marine cyanobacterium Synechococcus elongatus. J Appl Phycol 21:353–360

    Article  CAS  Google Scholar 

  • Bailliez C, Largeau C, Berkaloff C, Casadeval E (1986) Immobilization of Botryococcus braunii in alginate: influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl Microbiol Biotechnol 23:361–366

    Article  CAS  Google Scholar 

  • Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624

    Article  CAS  PubMed  Google Scholar 

  • Billini M, Stamatakis K, Sophianopoulou V (2008) Two members of a network of putative Na+/H+ antiporters are involved in salt and pH tolerance of the freshwater cyanobacterium Synechococcus elongatus. J Bacteriol 190:6318–6329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Ceseña AB, Sánchez-Saavedra MP (2015) Evaluation of sodium tripolyphosphate-alginate coating and re-calcifying on the entrapment of microalgae in alginate beads. J Appl Phycol 27:1205–1212

    Article  Google Scholar 

  • Chávarri M, Marañón I, Ares R, Ibáñez FC, Marzo F, Virrarán MC (2010) Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142:185–189

    Article  PubMed  Google Scholar 

  • Cífková I, Stolt M, Holuša R, Adam M (1987) Calcification of poly(2-hydroxyethyl methacrylate)-collagen composites implanted in rats. Biomaterials 8:30–34

    Article  PubMed  Google Scholar 

  • Covarrubias SA, Bashan LE de, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93:2669–2680

    Article  CAS  PubMed  Google Scholar 

  • Cruz I, Bashan Y, Hernández-Carmona G, de Bashan LE (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary treatment. Appl Microbiol Biotechnol 97:9847–9858

    Article  CAS  PubMed  Google Scholar 

  • Dainty AL, Goulding KH, Robinson PK, Simpkins I, Trevan MD (1986) Stability of alginate-immobilized algal cells. Biotechnol Bioeng 28:210–216

    Article  CAS  PubMed  Google Scholar 

  • Elvira C, San Roman J (1997) Complexation of polymeric drugs based on polyacrylic chains aminosalicylic acid side groups. J Mater Sci Mater Med 8:743–746

    Article  CAS  PubMed  Google Scholar 

  • Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M (1999) Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20:1427–1435

    Article  CAS  PubMed  Google Scholar 

  • Guillard RL, Ryther JH (1962) Studies of marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gulsen D, Chauhan A (2006) Effect of water content on transparency, swelling, lidocaine diffusion in p-HEMA gels. J Membr Sci 269:35–48

    Article  CAS  Google Scholar 

  • Hach (1997) Water analysis handbook. Hach Company, Loveland

    Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light responses curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalska A, Stobiecka A, Wysocki S (2009) A computational investigation of the interactions between harmane and the functional monomers commonly used in molecular imprinting. J Mol Struct (Theochem) 901:88–95

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18:945–951

    Article  CAS  Google Scholar 

  • Morachis JM, Mahmoud EA, Almutairi A (2012) Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol Rev 64:505–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford

    Google Scholar 

  • Refojo MF, Yasuda H (1965) Hydrogels from 2-hydroethylmethyl methacrylate and propylene glycol monoacrylate. J Appl Polym Sci 9:2425–2435

    Article  CAS  Google Scholar 

  • Shibasaki-Kitawa N, Iizuka Y, Yonemoto T (2000) Intraparticle cell growth and cell leakage in cultures of Nicotiana tabacum cells immobilized in calcium alginate gel beads. J Chem Technol Biotechnol 75:1008–1014

    Article  Google Scholar 

  • Soni ML, Kumar M, Namdeo KP (2010) Sodium alginate microspheres for extending drug release: formulation and in vitro evaluation. Int J Drug Deliv 2:64–68

    Article  CAS  Google Scholar 

  • Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials 25:1937–1945

    Article  CAS  PubMed  Google Scholar 

  • Tarté R (2009) Ingredients in food products: properties, functionality and applications. Springer, New York

    Book  Google Scholar 

  • Zainuddin Hill DJT, Whittaker AK, Lambert L, Chirila TV (2007) Preferential interaction of calcium ions in poly(2-hydroxyethyl methacrylate) hydrogels. J Mater Sci Mater Med 18:1141–1149

    Article  PubMed  Google Scholar 

  • Zhang E, Wang B, Wang Q, Zhang S, Zhao B (2008) Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Zou XP, Kang ET, Neoh KG (2002) Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption. Surf Coat Technol 149:119–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by Consejo Nacional de Ciencia y Tecnología, CONACyT (Project: SEP-CONACyT 2009-01-130074), and Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE (project No. 623108). A.B. Castro-Ceseña acknowledges her postdoctoral fellowship from CONACyT (Project No.: SEP-CONACyT 2009-01-130074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. del Pilar Sánchez-Saavedra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Ceseña, A.B., del Pilar Sánchez-Saavedra, M. & Ruíz-Güereca, D.A. Optimization of entrapment efficiency and evaluation of nutrient removal (N and P) of Synechococcus elongatus in novel core-shell capsules. J Appl Phycol 28, 2343–2351 (2016). https://doi.org/10.1007/s10811-015-0771-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0771-6

Keywords

Navigation