Skip to main content
Log in

Relation between light absorption measured by the quantitative filter technique and attenuation of Chlorella fusca cultures of different cell densities: application to estimate the absolute electron transport rate (ETR)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In order to estimate microalgal carbon assimilation or production of Chlorella fusca cultures based on electron transport rate (ETR) as in vivo chlorophyll a fluorescence, it is necessary to determine the photosynthetic yield and the absorbed quanta by measuring the incident irradiance and the fraction of absorbed light, i.e., absorptance or absorption coefficient in the photosynthetic active radiation (PAR) region of the spectra. Due to difficulties associated with the determination of light absorption, ETR is commonly expressed as relative units (rETR) although this is not a good estimator of the photosynthetic production since photobiological responses depend on the absorbed light. The quantitative filter technique (QFT) is commonly used to measure the absorbed quanta of cells retained on a filter (AbQf) as estimator of the absorbed quanta of cell suspensions (AbQs) determined by using integrating spheres. In this study, light attenuation of thin-layer cell suspensions is determined by using a measuring system designed to reduce the scattering. The light attenuation is related to the absorptance as the fraction of absorbed light by both indoor and outdoor C. fusca cultures of different cell densities. A linear relation between AbQf and AbQs (R 2 = 0.9902, p < 0.01) was observed, AbQf = 1.98 × AbQs, being 1.98 an amplification factor to convert AbQs values into AbQf ones. On the other hand, depending on the culture system, the convenience of the use of the absorptance, light absorption or specific light absorption coefficient expressed per area (thin-layer cascade or flat panel cultivators), volume (cylindrical and tubular photobioreactors), or chlorophyll units (any type of cultivation system) is discussed. The procedure for the measurement of light absorption presented in this study for C. fusca could be applied in other phytoplankton groups. The absorbed quanta as determined in this study can be used to express absolute ETR instead of relative ETR, since the first one provides much more relevant photobiological information of microalgae culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agustí S, Enríquez S, Frost-Christensen H, Sand-Jensen K, Duarte CM (1994) Light harvesting among photosynthetic organisms. Ecology 8:273–379

    Google Scholar 

  • Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 429–538

    Google Scholar 

  • Arbones B, Figueiras FG, Zapata M (1996) Determination of phytoplankton absorption coefficient in natural seawater samples: evidence of a unique equation to correct the pathlength amplification on glass-fiber filters. Mar Ecol Prog Ser 137:293–304

    Article  Google Scholar 

  • Berberoglu H, Gómez PS, Pilon L (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale and Chlorella sp used CO2 fixation and biofuel production. J Quant Spectrosc Radiat Transf 110:1879–1893

    Article  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Some soil algae from Enchanted Rock and related algal species. Phycol Stud Univ Tex IV:1–95

    Google Scholar 

  • Blache U, Jakob T, Su W, Wilhelm C (2011) The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae. Plant Physiol Biochem 49:801–808

    Article  CAS  PubMed  Google Scholar 

  • Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH (2007) Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol Bioeng 97:1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Bricaud A, Stramski D (1990) Spectral absorption coefficients of living phytoplankton and non algal biogenous matter: a comparison between the Oeru upwelling area and Sargasso Sea. Limnol Oceanogr 35:562–568

    Article  CAS  Google Scholar 

  • Bunt J (1995) Light and photosynthesis in aquatic ecosystems. Aquat Bot 50:111–112

    Article  Google Scholar 

  • Butler WL (1962) Absorption of light in turbid materials. J Opt Soc Am 52:292–299

    Article  CAS  Google Scholar 

  • Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnol Oceanogr 38:1321–1327

    Article  CAS  Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol 27:1335–1349

    CAS  Google Scholar 

  • Figueroa FL, Mercado J, Jiménez C, Salles S, Aguilera J, Sánchez-Saavedra MP, Lebert M, Häder D-P, Montero O, Lubián L (1997) Relationship between bio-optical characteristics and photoinhibition of phytoplankton. Aquat Bot 59:237–251

    Article  CAS  Google Scholar 

  • Figueroa FL, Conde-Álvarez RM, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275

    Article  CAS  PubMed  Google Scholar 

  • Figueroa FL, Martínez B, Israel A, Neori A, Malta E, Put A Jr, Inken S, Marquardt R, Rachamim T, Arazi U, Frenk S, Korbee N (2009) Acclimation of Red Sea macroalgae to solar radiation: photosynthesis and thallus absorptance. Aquat Biol 7:159–172

    Article  Google Scholar 

  • Figueroa FL, Jerez CG, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am J Aquat Res 41:801–819

    Article  Google Scholar 

  • Flameling IA, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnol Oceanogr 43:284–297

    Article  CAS  Google Scholar 

  • Fujiki T, Taguchi S (2002) Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. J Plankton Res 24:859–874

    Article  CAS  Google Scholar 

  • Geider RJ, Osborne BA (1992) Algal photosynthesis: the measurement of algal gas exchange. Chapman and Hall, Norwell, p 256

    Book  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • Gilbert M, Domin A, Becker A, Wilhelm C (2000) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38:111–126

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2009) Upper limits of photosynthetic productivity and problems of scaling. J Appl Phycol 21:519–522

    Article  Google Scholar 

  • Hoepffner N, Sathyendranath S (1993) Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter. J Geophys Res 98:22789–22803

    Article  CAS  Google Scholar 

  • Jerez CG, Navarro E, Malpartida I, Rico RM, Masojídek J, Abdala R, Figueroa FL (2014) Hydrodynamics and photosynthesis performance of Chlorella fusca grown in a thin-layer cascade (TLC) system. Aquat Biol 22:111–122

    Article  Google Scholar 

  • Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse amplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251

    Article  CAS  Google Scholar 

  • Kiefer D, SooHoo J (1982) Spectral absorbtion by marine particles of coastal waters of Baja California. Limnol Oceanogr 27:492–499

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambrige University Press, Cambridge, 509 pp

    Book  Google Scholar 

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption-coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642

    Google Scholar 

  • Kishino M, Okami N, Takahashi M, Ichimura S (1986) Light utilization efficiency and quantum yield of phytoplankton in the sea. Bull Mar Sci 37:634–642

    Google Scholar 

  • Klughammer C, Schreiber U (2015) Apparent PSII absorption cross-section and estimation of mean PAR in optically thin and dense suspensions of Chlorella. Photosynth Res 123:77–92

    Article  CAS  PubMed  Google Scholar 

  • Kromkamp JC, Dijkman NA, Peene J, Simis SGH, Gons HJL (2008) Estimating phytoplankton primary production in Lake IJsselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. Eur J Phycol 43:327–344

    Article  CAS  Google Scholar 

  • Kromkamp JC, Beardall J, Sukenik A, Kopecky J, Masojidek J, Van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat Microb Ecol 56:309–322

    Article  Google Scholar 

  • Lewis MR, Warnock RE, Platt T (1985) Absorption and photosynthetic action spectra for natural phytoplankton populations implications for production in the open sea. Limnol Oceanogr 30:794–806

    Article  Google Scholar 

  • Lippemeier S, Hintze R, Vanselow KH, Hartig P, Colijn F (2001) In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. Eur J Phycol 36:89–100

    Article  Google Scholar 

  • Lohrenz SE (2000) A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique. J Plankton Res 22:639–657

    Article  Google Scholar 

  • Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317

    Article  PubMed  Google Scholar 

  • Masojidek J, Vonshak A, Torzillo G (2011) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic science: methods and applications. Springer, Dordrecht, pp 277–292

    Google Scholar 

  • Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N (2011) Marine compounds with antibacterial, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C 153:191–222

    Google Scholar 

  • Mercado JM, Jiménez C, Niell FX, Figueroa FL (1996) Comparison of methods for measuring light absorption by algae and their application to the estimation of the package effect. Sci Mar 60:39–45

    Google Scholar 

  • Mitchell BG, Kiefer DA (1984) Determination of absorption and fluorescence excitation spectra for phytoplankton. In: Holm-Hansen O, Bolis L, Giles R (eds) Marine phytoplankton and productivity. AGU, Washington, DC, pp 157–169

    Chapter  Google Scholar 

  • Mitchell BG, Kiefer DA (1988) Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton. Deep Sea Res 35:639–663

    Article  CAS  Google Scholar 

  • Obata M, Toda T, Taguchi S (2009) Using chlorophyll fluorescence to monitor yields of microalgal production. J Appl Phycol 21:315–319

    Article  CAS  Google Scholar 

  • Perkins RG, Kromkamp JC, Serôdio J, Lavaud J, Jesus B, Mouget JL, Lefebvre S, Forster RM (2011) The application of variable chlorophyll fluorescence to microphytobenthic biofilms. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 237–275

    Google Scholar 

  • Platt T, Gallegos CL (1980) Modelling primary production. In: Falkowski PG (ed) Primary production in the sea. Plenum Press, NY, pp 339–351

    Chapter  Google Scholar 

  • Ritchie RJ, Runcie JW (2014) A portable reflectance-absorptance-transmittance meter for photosynthetic work on vascular plant leaves. Photosynthetica 52:614–626

    Article  CAS  Google Scholar 

  • Roesler CS (1998) Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique. Limnol Oceanogr 43:1649–1660

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–222

    Article  CAS  Google Scholar 

  • Schreiber U, Klughammer C, Kolbowski J (2012) Assesment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suggett DJ, MacIntyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Methods 2:316–332

    Article  Google Scholar 

  • Suggett DJ, Moore CM, Hickman AE, Geider RJ (2009) Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376:1–19

    Article  Google Scholar 

  • Suggett DJ, Moore CM, Geider RJ (2011) Estimating aquatic productivity from active fluorescence measurements. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 103–127

    Google Scholar 

  • Szabó M, Wangpraseurt D, Tamburic B, Larkum AWD, Schreiber U, Sugget DJ, Kühl M, Ralph PJ (2014) Effective light absorption and absolute electron transport rate in the coral Pocillopora damicornis. Plant Physiol Biochem 83:159–167

    Article  PubMed  Google Scholar 

  • Tassan S, Allali K (2002) Proposal for the simultaneous measurement of light absorption and backscattering by aquatic particulates. J Plankton Res 24:471–479

    Article  Google Scholar 

  • Torzillo G, Accolla P, Pinzani E, Masojidek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291

    Article  CAS  Google Scholar 

  • Torzillo G, Paola B, Masojídek J, Bernardini P (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature ans its effect on the productivity of outdoor cultures of Spirulina platensis (cyanobacteria). J Phycol 34:504–510

    Article  CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92:909–919

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Becker A, Toepel J, Vieler A, Rautenberger R (2004) Photophysiology and primary production of phytoplankton in freshwater. Physiol Plant 120:347–357

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld JV, Bartz R, Kitchen JC (1990) Reflective-tube absorption meter. Ocean Optics X, Proc SPIE 1302:124–136

    Article  Google Scholar 

Download references

Acknowledgments

CGJ thanks the FPU grant of the Spanish Ministry for Education. The financial support by University of Málaga, Ministry for Economy and Competitivity of Spanish Government (Acción Complementaria CTM2011-15659-E), and Junta de Andalucía (Research Group Photobiology and Biotechnology of Aquatic Organisms, RNM-295) is extensively grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix L. Figueroa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerez, C.G., García, C.B., Rearte, A. et al. Relation between light absorption measured by the quantitative filter technique and attenuation of Chlorella fusca cultures of different cell densities: application to estimate the absolute electron transport rate (ETR). J Appl Phycol 28, 1635–1648 (2016). https://doi.org/10.1007/s10811-015-0685-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0685-3

Keywords

Navigation