Skip to main content
Log in

Classification of affine symmetry groups of orbit polytopes

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a finite group acting linearly on a vector space V. We consider the linear symmetry groups \({\text {GL}}(Gv)\) of orbits \(Gv\subseteq V\), where the linear symmetry group \({\text {GL}}(S)\) of a subset \(S\subseteq V\) is defined as the set of all linear maps of the linear span of S which permute S. We assume that V is the linear span of at least one orbit Gv. We define a set of generic points in V, which is Zariski open in V, and show that the groups \({\text {GL}}(Gv)\) for v generic are all isomorphic, and isomorphic to a subgroup of every symmetry group \({\text {GL}}(Gw)\) such that V is the linear span of Gw. If the underlying characteristic is zero, “isomorphic” can be replaced by “conjugate in \({\text {GL}}(V)\).” Moreover, in the characteristic zero case, we show how the character of G on V determines this generic symmetry group. We apply our theory to classify all affine symmetry groups of vertex-transitive polytopes, thereby answering a question of Babai (Geom Dedicata 6(3):331–337, 1977. https://doi.org/10.1007/BF02429904).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Babai, L.: Symmetry groups of vertex-transitive polytopes. Geom. Dedicata 6(3), 331–337 (1977). https://doi.org/10.1007/BF02429904

    Article  MathSciNet  MATH  Google Scholar 

  2. Barvinok, A.I., Vershik, A.M.: Convex hulls of orbits of representations of finite groups, and combinatorial optimization. Funct. Anal. Appl. 22(3), 224–225 (1988). https://doi.org/10.1007/BF01077628

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumeister, B., Haase, C., Nill, B., Paffenholz, A.: On permutation polytopes. Adv. Math. 222(2), 431–452 (2009). https://doi.org/10.1016/j.aim.2009.05.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Bremner, D., Dutour Sikirić, M., Pasechnik, D.V., Rehn, T., Schürmann, A.: Computing symmetry groups of polyhedra. LMS J. Comput. Math. 17(1), 565–581 (2014). https://doi.org/10.1112/S1461157014000400

    Article  MathSciNet  MATH  Google Scholar 

  5. Bremner, D., Dutour Sikirić, M., Schürmann, A.: Polyhedral representation conversion up to symmetries. In: Polyhedral Computation. CRM Proceeding Lecture Notes, vol. 48, pp. 45–71. American Mathematical Society, Providence, RI (2009)

    Chapter  Google Scholar 

  6. Doignon, J.P.: Any finite group is the group of some binary, convex polytope. Arxiv Preprint (2016). https://arxiv.org/abs/1602.02987

  7. Ellis, G., Harris, J., Sköldberg, E.: Polytopal resolutions for finite groups. J. Reine Angew. Math. 598, 131–137 (2006). https://doi.org/10.1515/CRELLE.2006.071

    Article  MathSciNet  MATH  Google Scholar 

  8. Friese, E., Ladisch, F.: Affine symmetries of orbit polytopes. Adv. Math. 288, 386–425 (2016). https://doi.org/10.1016/j.aim.2015.10.021

    Article  MathSciNet  MATH  Google Scholar 

  9. Godsil, C.D.: GRRs for nonsolvable groups. In: Algebraic Methods in Graph Theory. Colloquium Mathematical Society János Bolyai, vol. 25, pp. 221–239. North-Holland, Amsterdam (1981)

  10. Guralnick, R.M., Perkinson, D.: Permutation polytopes and indecomposable elements in permutation groups. J. Comb. Theory Ser. A 113(7), 1243–1256 (2006). https://doi.org/10.1016/j.jcta.2005.11.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Hofmann, G., Neeb, K.H.: On convex hulls of orbits of Coxeter groups and Weyl groups. Münster J. Math. 7(2), 463–487 (2014). https://doi.org/10.17879/58269762646

    Article  MathSciNet  MATH  Google Scholar 

  12. Isaacs, I.M.: Linear groups as stabilizers of sets. Proc. Am. Math. Soc. 62(1), 28–30 (1977). https://doi.org/10.2307/2041939

    Article  MathSciNet  MATH  Google Scholar 

  13. Isaacs, I.M.: Character Theory of Finite Groups. Dover, New York (1994). (Corrected reprint of the 1976 edition by Academic Press, New York)

    MATH  Google Scholar 

  14. Ladisch, F.: Groups with a nontrivial nonideal kernel. Arxiv Preprint (2016). https://arxiv.org/abs/1608.00231

  15. Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0525-8

    Book  MATH  Google Scholar 

  16. Lam, T.Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131, 2nd edn. Springer, New York (2001). https://doi.org/10.1007/978-1-4419-8616-0

    Book  MATH  Google Scholar 

  17. Li, C.K., Milligan, T.: Linear preservers of finite reflection groups. Linear Multilinear Algebra 51(1), 49–81 (2003). https://doi.org/10.1080/0308108031000053648

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C.K., Spitkovsky, I., Zobin, N.: Finite reflection groups and linear preserver problems. Rocky Mt. J. Math. 34(1), 225–251 (2004). https://doi.org/10.1216/rmjm/1181069902

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, C.K., Tam, B.S., Tsing, N.K.: Linear maps preserving permutation and stochastic matrices. Linear Algebra Appl. 341, 5–22 (2002). https://doi.org/10.1016/S0024-3795(00)00242-1

    Article  MathSciNet  MATH  Google Scholar 

  20. McCarthy, N., Ogilvie, D., Spitkovsky, I., Zobin, N.: Birkhoff’s theorem and convex hulls of Coxeter groups. Linear Algebra Appl. 347, 219–231 (2002). https://doi.org/10.1016/S0024-3795(01)00556-0

    Article  MathSciNet  MATH  Google Scholar 

  21. McCarthy, N., Ogilvie, D., Zobin, N., Zobin, V.: Convex geometry of Coxeter-invariant polyhedra. In: Kamińska, A. (ed.) Trends in Banach Spaces and Operator Theory. Contemporary Mathematics, vol. 321, pp. 153–179. American Mathematical Society, Providence, RI (2003). https://doi.org/10.1090/conm/321/05642

    Chapter  Google Scholar 

  22. Onn, S.: Geometry, complexity, and combinatorics of permutation polytopes. J. Comb. Theory Ser. A 64(1), 31–49 (1993). https://doi.org/10.1016/0097-3165(93)90086-N

    Article  MathSciNet  MATH  Google Scholar 

  23. Robertson, S.A.: Polytopes and Symmetry. London Mathematical Society Lecture Note Series, vol. 90. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  24. Sanyal, R., Sottile, F., Sturmfels, B.: Orbitopes. Mathematika 57(2), 275–314 (2011). https://doi.org/10.1112/S002557931100132X

    Article  MathSciNet  MATH  Google Scholar 

  25. Schulte, E., Williams, G.I.: Polytopes with preassigned automorphism groups. Discrete Comput. Geom. 54(2), 444–458 (2015). https://doi.org/10.1007/s00454-015-9710-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Sehgal, S.K.: Nilpotent elements in group rings. Manuscr. Math. 15(1), 65–80 (1975). https://doi.org/10.1007/bf01168879

    Article  MathSciNet  MATH  Google Scholar 

  27. Zobin, N., Zobina, V.: Coxeter groups and interpolation of operators. Integral Equ. Oper. Theory 18(3), 335–367 (1994). https://doi.org/10.1007/BF01206296

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Ladisch.

Additional information

Erik Friese and Frieder Ladisch partially supported by the DFG (Project: SCHU 1503/6-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friese, E., Ladisch, F. Classification of affine symmetry groups of orbit polytopes. J Algebr Comb 48, 481–509 (2018). https://doi.org/10.1007/s10801-017-0804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-017-0804-0

Keywords

Mathematics Subject Classification

Navigation