Skip to main content
Log in

The Waldschmidt constant for squarefree monomial ideals

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Given a squarefree monomial ideal \(I \subseteq R =k[x_1,\ldots ,x_n]\), we show that \(\widehat{\alpha }(I)\), the Waldschmidt constant of I, can be expressed as the optimal solution to a linear program constructed from the primary decomposition of I. By applying results from fractional graph theory, we can then express \(\widehat{\alpha }(I)\) in terms of the fractional chromatic number of a hypergraph also constructed from the primary decomposition of I. Moreover, expressing \(\widehat{\alpha }(I)\) as the solution to a linear program enables us to prove a Chudnovsky-like lower bound on \(\widehat{\alpha }(I)\), thus verifying a conjecture of Cooper–Embree–Hà–Hoefel for monomial ideals in the squarefree case. As an application, we compute the Waldschmidt constant and the resurgence for some families of squarefree monomial ideals. For example, we determine both constants for unions of general linear subspaces of \(\mathbb P^n\) with few components compared to n, and we compute the Waldschmidt constant for the Stanley–Reisner ideal of a uniform matroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baczyńska, M., Dumnicki, M., Habura, A., Malara, G., Pokora, P., Szemberg, T., Szpond, J., Tutaj-Gasińska, H.: Points fattening on \({\mathbb{P}}^1 \times {\mathbb{P}}^1\) and symbolic powers of bi-homogeneous ideals. J. Pure Appl. Algebra 218(8), 1555–1562 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bocci, C., Franci, B.: Waldschmidt constants for Stanley-Reisner ideals of a class of simplicial complexes. J. Algebra Appl. 15 (2016), no. 6, 1650137 (13 pages) Preprint. (2015) arXiv:1504.04201v1

  3. Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebr. Geom. 19(3), 399–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bocci, C., Harbourne, B.: The resurgence of ideals of points and the containment problem. Proc. Am. Math. Soc. 138(4), 1175–1190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chudnovsky, G.V.: Singular points on complex hypersurfaces and multidimensional Schwarz lemma. Seminar on Number Theory, Paris 1979–80, pp. 29–69, Progr. Math., 12, Birkhäuser, Boston, Mass. (1981)

  6. Cooper, S.M., Embree, R.J.D., Hà, H.T., Hoefel, A.H.: Symbolic powers of monomial ideals. To appear in Proc. Edinb. Math. Soc. (2) (2013). doi:10.1017/S0013091516000110

  7. Dumnicki, M.: Containments of symbolic powers of ideals of generic points in \({\mathbb{P}}^3\). Proc. Am. Math. Soc. 143(2), 513–530 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dumnicki, M., Harbourne, B., Nagel, U., Seceleanu, A., Szemberg, T., Tutaj-Gasińska, H.: Resurgences for ideals of special point configurations in \({\mathbb{P}}^N\) coming from hyperplane arrangements. J. Algebra 443, 383–394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dumnicki, M., Harbourne, B., Szemberg, T., Tutaj-Gasińska, H.: Linear subspaces, symbolic powers and Nagata type conjectures. Adv. Math. 252, 471–491 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ein, L., Lazarsfeld, R., Smith, K.: Uniform behavior of symbolic powers of ideals. Invent. Math. 144(2), 241–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Esnault, H., Viehweg, E.: Sur une minoration du degré d’hypersurfaces s’annulant en certains points. Math. Ann. 263(1), 75–86 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fatabbi, G., Harbourne, B., Lorenzini, A.: Inductively computable unions of fat linear subspaces. J. Pure Appl. Algebra 219(12), 5413–5425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fekete, H.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17(1), 228–249 (1923)

    Article  MathSciNet  Google Scholar 

  14. Franci, B.: Costanti di Waldschmidt di Ideali di Stanley-Reisner di Bipiramidi. Università di Siena, Tesi di Laurea (2014)

    Google Scholar 

  15. Geramita, A. V., Harbourne, B., Migliore, J., Nagel, U.: Matroid configurations and symbolic powers of their ideals. Trans. Am. Math. Soc. (to appear) (2015). arXiv:1507.00380v1

  16. Guardo, E., Harbourne, B., Van Tuyl, A.: Asymptotic resurgences for ideals of positive dimensional subschemes of projective space. Adv. Math. 246, 114–127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guardo, E., Harbourne, B., Van Tuyl, A.: Symbolic powers versus regular powers of ideals of general points in \({\mathbb{P}}^1 \times {\mathbb{P}}^1\). Can. J. Math. 65(4), 823–842 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harbourne, B., Huneke, C.: Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28A, 247–266 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Harbourne, B., Roé, J.: Computing multi-point Seshadri constants on \({\mathbb{P}}^2\). Bull. Belg. Math. Soc. Simon Stevin 16(5), 887–906 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147(2), 349–369 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lampa-Baczyńska, M., Malara, G.: On the containment hierarchy for simplicial ideals. J. Pure Appl. Algebra 219(12), 5402–5412 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lazarsfeld, R.: Positivity in Algebraic Geometry. I. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  23. Scheinerman, E., Ullman, D.: Fractional Graph Theory. A Rational Approach to the Theory of Graphs. Wiley, New York (1997)

    MATH  Google Scholar 

  24. Schwede, K.: A canonical linear system associated to adjoint divisors in characteristic \(p > 0\). J. Reine Angew. Math. 696, 69–87 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Simis, A., Vasconcelos, W., Villareal, R.: On the ideal theory of graphs. J. Algebra 167(2), 389–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Skoda, H.: Estimations \(L^2\) pour l’opérateur \(\widehat{\partial }\) et applications arithmétiques. In: Lelong, S.P. (Analyse) 1975/76, Lecture Notes Math., vol. 578, 314–323. Springer, (1977)

  27. Van Tuyl, A.: A beginner’s guide to edge and cover ideals. In: Monomial ideals, computations and applications, Lecture Notes Math., vol. 2083, pp. 63–94. Springer (2013)

  28. Waldschmidt, M.: Propriétés arithmétiques de fonctions de plusieurs variables. II. In: Lelong, S.P. (Analyse), 1975/76, Lecture Notes Math., vol. 578. Springer (1977)

  29. Waldschmidt, M.: Nombres transcendants et groupes algébriques. Astérisque 69/70, Socéte Mathématiqué de France (1979)

Download references

Acknowledgments

This project was started at the Mathematisches Forschungsinstitut Oberwolfach (MFO) as part of the mini-workshop “Ideals of Linear Subspaces, Their Symbolic Powers and Waring Problems” organized by C. Bocci, E. Carlini, E. Guardo and B. Harbourne. All the authors thank the MFO for providing a stimulating environment. Bocci acknowledges the financial support provided by GNSAGA of INdAM. Guardo acknowledges the financial support provided by PRIN 2011. Harbourne was partially supported by NSA Grant Number H98230-13-1-0213. Janssen was partially supported by Dordt College. Janssen and Seceleanu received support from MFO’s NSF Grant DMS-1049268, “NSF Junior Oberwolfach Fellows.” Nagel was partially supported by the Simons Foundation under Grant No. 317096. Van Tuyl acknowledges the financial support provided by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Van Tuyl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocci, C., Cooper, S., Guardo, E. et al. The Waldschmidt constant for squarefree monomial ideals. J Algebr Comb 44, 875–904 (2016). https://doi.org/10.1007/s10801-016-0693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0693-7

Keywords

Mathematics Subject Classification

Navigation