Skip to main content
Log in

Splines, lattice points, and arithmetic matroids

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let X be a \((d\times N)\)-matrix. We consider the variable polytope \(\varPi _X(u) = \{ w \ge 0 : X w = u \}\). It is known that the function \(T_X\) that assigns to a parameter \(u \in \mathbb {R}^d\) the volume of the polytope \(\varPi _X(u)\) is piecewise polynomial. The Brion–Vergne formula implies that the number of lattice points in \(\varPi _X(u)\) can be obtained by applying a certain differential operator to the function \(T_X\). In this article, we slightly improve the Brion–Vergne formula and we study two spaces of differential operators that arise in this context: the space of relevant differential operators (i.e. operators that do not annihilate \(T_X\)) and the space of nice differential operators (i.e. operators that leave \(T_X\) continuous). These two spaces are finite-dimensional homogeneous vector spaces, and their Hilbert series are evaluations of the Tutte polynomial of the arithmetic matroid defined by the matrix X. They are closely related to the \(\mathscr {P}\)-spaces studied by Ardila–Postnikov and Holtz–Ron in the context of zonotopal algebra and power ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For an example, consider Example 10.6 and in particular (99). There is only one hyperplane in \(\mathbb {Z}/2\mathbb {Z}\oplus \mathbb {Z}\). It corresponds to \(H= {{\mathrm{{{span}}}}}((1,0))\) in \(\mathbb {R}^2\) and representatives for the two points that it contains are \(\lambda _1=(1,0)\) and \(\lambda _2=(0,0)\). The normal vector is \(\eta = (0,1)\).

References

  1. Akopyan, A.A., Saakyan, A.A.: A system of differential equations that is related to the polynomial class of translates of a box spline. Mat. Zametki 44(6), 705–724 (1988)

    MathSciNet  Google Scholar 

  2. Ardila, F., Postnikov, A.: Combinatorics and geometry of power ideals. Trans. Am. Math. Soc. 362(8), 4357–4384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ardila, F., Postnikov, A.: Correction to “Combinatorics and geometry of power ideals”: Two counterexamples for power ideals of hyperplane arrangements. Trans. Am. Math. Soc. 367, 3759–3762 (2015) (correction to [2])

  4. Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. Springer, New York (2007)

    Google Scholar 

  5. Ben-Artzi, A., Ron, A.: Translates of exponential box splines and their related spaces. Trans. Am. Math. Soc. 309(2), 683–710 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berget, A.: Products of linear forms and Tutte polynomials. Eur. J. Comb. 31(7), 1924–1935 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boysal, A., Vergne, M.: Paradan’s wall crossing formula for partition functions and Khovanskii–Pukhlikov differential operator. Ann. Inst. Fourier (Grenoble) 59(5), 1715–1752 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brändén, P., Moci, L.: The multivariate arithmetic Tutte polynomial. Trans. Am. Math. Soc. 366(10), 5523–5540 (2014)

    Article  MATH  Google Scholar 

  9. Brion, M., Vergne, M.: Residue formulae, vector partition functions and lattice points in rational polytopes. J. Am. Math. Soc. 10(4), 797–833 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brion, M., Vergne, M.: Arrangement of hyperplanes. I. Rational. functions and Jeffrey–Kirwan residue. Ann. Sci. École Norm. Sup. (4) 32(5), 715–741 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Cavazzani, F., Moci, L.: Geometric Realizations and Duality for Dahmen–Micchelli Modules and De Concini–Procesi–Vergne Modules (2013). arXiv:1303.0902

  12. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 185. Springer, New York (2005)

  13. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    Google Scholar 

  14. D’Adderio, M., Moci, L.: Ehrhart polynomial and arithmetic Tutte polynomial. Eur. J. Comb. 33(7), 1479–1483 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Adderio, M., Moci, L.: Arithmetic matroids, the Tutte polynomial and toric arrangements. Adv. Math. 232(1), 335–367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dahmen, W., Micchelli, C.A.: On the local linear independence of translates of a box spline. Stud. Math. 82(3), 243–263 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Dahmen, W., Micchelli, C.A.: On the solution of certain systems of partial difference equations and linear dependence of translates of box splines. Trans. Am. Math. Soc. 292(1), 305–320 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Boor, C., Dyn, N., Ron, A.: On two polynomial spaces associated with a box spline. Pac. J. Math. 147(2), 249–267 (1991)

    Article  MATH  Google Scholar 

  19. de Boor C., Höllig, K.: \(B\)-splines from parallelepipeds. J. Anal. Math. 42, 99–115 (1982)

  20. de Boor, C., Höllig, K., Riemenschneider, S.D.: Box Splines, vol. 98. Springer, New York (1993)

    Book  MATH  Google Scholar 

  21. De Concini, C., Procesi, C.: Topics in Hyperplane Arrangements, Polytopes and Box-Splines. Springer, New York (2011)

    MATH  Google Scholar 

  22. De Concini, C., Procesi, C., Vergne, M.: Vector partition functions and index of transversally elliptic operators. Transform. Groups 15(4), 775–811 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. De Concini, C., Procesi, C., Vergne, M.: Infinitesimal index: cohomology computations. Transform. Groups 16(3), 717–735 (2011)

  24. De Concini, C., Procesi, C., Vergne, M.: Box splines and the equivariant index theorem. J. Inst. Math. Jussieu 12, 503–544 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. De Concini, C., Procesi, C., Vergne, M.: The infinitesimal index. J. Inst. Math. Jussieu 12(2), 297–334 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. De Loera, J.A.: The many aspects of counting lattice points in polytopes. Math. Semesterber. 52(2), 175–195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lenz, M.: Interpolation, box splines, and lattice points in zonotopes. Int. Math. Res. Not. 2014(20), 5697–5712 (2014)

  28. Lenz, M.: Splines, lattice points, and (arithmetic) matroids. In: Proceedings of the 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), DMTCS Proceedings, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, France, pp. 49–60 (2014)

  29. Lenz, M.: Lattice points in polytopes, box splines, and Todd operators. Int. Math. Res. Not. 2015(14), 5289–5310 (2015)

  30. Dyn, N., Ron, A.: Local approximation by certain spaces of exponential polynomials, approximation order of exponential box splines, and related interpolation problems. Trans. Am. Math. Soc. 319(1), 381–403 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

    Google Scholar 

  32. Hirzebruch, F.: Neue topologische Methoden in der algebraischen Geometrie. Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9. Springer, Berlin (1956)

  33. Holtz, O., Ron, A.: Zonotopal algebra. Adv. Math. 227(2), 847–894 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Holtz, O., Ron, A., Zhiqiang, X.: Hierarchical zonotopal spaces. Trans. Am. Math. Soc. 364(2), 745–766 (2012)

    Article  MATH  Google Scholar 

  35. Jia, R.-Q.: Subspaces invariant under translations and dual bases for box splines. Ser. A. Chin. Ann. Math. 11(6), 733–743 (1990) (in Chinese)

  36. Khovanskiĭ, A., Pukhlikov, A.: The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes. Algebr. Anal. 4(4), 188–216 (1992)

    Google Scholar 

  37. Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211, Springer, New York (2002)

  38. Lenz, M.: Hierarchical zonotopal power ideals. Eur. J. Comb. 33(6), 1120–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Moci, L.: A Tutte polynomial for toric arrangements. Trans. Am. Math. Soc. 364(2), 1067–1088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Orlik, P., Terao, H.: Commutative algebras for arrangements. Nagoya Math. J. 134, 65–73 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Oxley, J.G.: Matroid Theory. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  42. Stanley, R.P.: An introduction to hyperplane arrangements. In: Miller, E., Reiner, V., Sturmfels, B. (eds.) Geometric Combinatorics, IAS/Park City Mathematics Series, vol. 13, pp. 389–496. American Mathematical Society, Providence (2007)

  43. Szenes, A., Vergne, M.: Residue formulae for vector partitions and Euler–MacLaurin sums. Adv. Appl. Math. 30(1–2), 295–342 (2003) (Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001))

  44. Vergne, M.: Residue formulae for Verlinde sums, and for number of integral points in convex rational polytopes. In: Mezzetti, E., Paycha, S. (eds.) European Women in Mathematics (Malta, 2001), pp. 225–285. World Science Publications, River Edge (2003)

  45. Wang, R.-H.: Multivariate spline and algebraic geometry. J. Comput. Appl. Math. 1211–2, 153–163 (2000) (Numerical analysis in the 20th century, Vol. I, Approximation theory)

Download references

Acknowledgments

The author would like to thank Lars Kastner and Zhiqiang Xu for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Lenz.

Additional information

The author was supported by a Junior Research Fellowship of Merton College (University of Oxford).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, M. Splines, lattice points, and arithmetic matroids. J Algebr Comb 43, 277–324 (2016). https://doi.org/10.1007/s10801-015-0621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0621-2

Keywords

Mathematics Subject Classification

Navigation