Skip to main content
Log in

A lower bound for depths of powers of edge ideals

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let \(G\) be a graph, and let \(I\) be the edge ideal of \(G\). Our main results in this article provide lower bounds for the depth of the first three powers of \(I\) in terms of the diameter of \(G\). More precisely, we show that \(\mathrm{{depth}}\,R/I^t \ge \left\lceil {\frac{d-4t+5}{3}} \right\rceil +p-1\), where \(d\) is the diameter of \(G\) and \(p\) is the number of connected components of \(G\) and \(1 \le t \le 3\). For general powers of edge ideals we show that \(\mathrm{{depth}}\,R/I^t \ge p-t\). As an application of our results we obtain the corresponding lower bounds for the Stanley depth of the first three powers of \(I\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandari, S., Herzog, J., Hibi, T.: Monomial ideals whose depth function has any given number of strict local maxima. Ark. Mat. 52, 11–19 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brodmann, M.: The asymptotic nature of the analytic spread. Math. Proc. Camb. Philos. Soc. 86, 35–39 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Revised Edition. Cambridge University Press, Cambridge (1997)

  4. Bruns, W., Krattenthaler, C., Uliczka, J.: Stanley decompositions and Hilbert depth in the Koszul complex. J. Commut. Algebra 2, 327–357 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burch, L.: Codimension and analytic spread. Proc. Camb. Philos. Soc. 72, 369–373 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, J., Morey, S., Sung, A.: The stable set of associated primes of the ideal of a graph. Rocky Mountain J. Math. 32, 71–89 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dao, H., Huneke, C., Schweig, J.: Bounds on the regularity and projective dimension of ideals associated to graphs. J. Algebraic Combin. 38, 37–55 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dao, H., Schweig, J.: Projective dimension, graph domination parameters, and independence complex homology. J. Combin. Theory Ser. A 120, 453–469 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dochtermann, A., Engström, A.: Algebraic properties of edge ideals via combinatorial topology. Electron. J. Combin. 16 (2009) (Special volume in honor of Anders Björner, Research Paper 2, 24 pp)

  10. Duval, A.M., Goeckner, B., Klivans, C.J., Martin, J.L.: A non-partitionable Cohen–Macaulay simplicial complex. arXiv:1504.04279 [math.CO]

  11. Eisenbud, D., Huneke, C.: Cohen–Macaulay Rees algebras and their specializations. J. Algebra 81, 202–224 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eisenbud, D., Mustaţǎ, M., Stillman, M.: Cohomology on toric varieties and local cohomology with monomial supports. J. Symb. Comput 29, 583–600 (2000)

    Article  MATH  Google Scholar 

  13. Engström, A., Noren, P.: Cellular resolutions of powers of monomial ideals. arXiv:1212.2146 [math.AC]

  14. Faltings, G.: Uber lokale Kohomologiegruppen hoher Ordnung. J. fur Reine Angewandte Math 313, 43–51 (1980)

    MATH  MathSciNet  Google Scholar 

  15. Francisco, C., Ha, H.T., Van Tuyl, A.: Associated primes of monomial ideals and odd holes in graphs. J. Algebraic Comb. 32, 287–301 (2010)

    Article  MATH  Google Scholar 

  16. Gitler, I., Valencia, C.: Bounds for invariants of edge rings. Commun. Algebra 33, 1603–1616 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  18. Hà, H.T., Morey, S.: Embedded associated primes of powers of square-free monomial ideals. J. Pure Appl. Algebra 214, 301–308 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math. 88, 403–450 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. Herzog, J.: A survey on Stanley depth, Monomial ideals, computations and applications, 3–45, Lecture Notes in Math, 2083. Springer, Heidelberg (2013)

  21. Herzog, J., Hibi, T.: The depth of powers of an ideal. J. Algebra 291, 534–550 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hà, H.T., Trung, N., Trung, T.: Depth and regularity of powers of sums of ideals. arXiv:1501.06038v1 [math.AC]

  23. Kaiser, T., Stehlík, M., Škrekovski, R.: Replication in critical graphs and the persistence of monomial ideals. J. Comb. Theory Ser. A 123, 239–251 (2014)

    Article  MATH  Google Scholar 

  24. Kummini, M.: Regularity, depth and arithmetic rank of bipartite edge ideals. J. Algebraic Comb. 30, 429–445 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lyubeznik, G.: On some local cohomology modules. Adv. Math. 213, 621–643 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Matsumura, H.: Commutative Ring Theory, Cambridge Studies in Advanced Math, vol. 8. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  27. Morey, S.: Depths of powers of the edge ideal of a tree. Commun. Algebra 38, 4042–4055 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ogus, A.: Local cohomological dimension of algebraic varieties. Ann. Math. 98, 999–1013 (1976)

    MathSciNet  Google Scholar 

  29. Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Inst. Hautes Etudes Sci. Publ. Math. 42, 47–119 (1973)

    Article  MathSciNet  Google Scholar 

  30. Pournaki, M.R., Seyed Fakhari, S.A., Yassemi, S.: Stanley depth of powers of the edge ideal of a forest. Proc. Am. Math. Soc. 141, 3327–3336 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rauf, A.: Depth and Stanley depth of multigraded modules. Commun. Algebra 38, 773–784 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Simis, A., Vasconcelos, W.V., Villarreal, R.H.: On the ideal theory of graphs. J. Algebra 167, 389–416 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Singh, A., Walther, U.: Local cohomology and pure morphisms. Ill. J. Math. 51, 287–298 (2007)

    MATH  MathSciNet  Google Scholar 

  34. Stanley, R.P.: Linear diophantine equations and local cohomology. Invent. Math. 68, 175–193 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  35. Terai, N.: Alexander duality theorem and Stanley-Reisner rings. Sürikaisekikenkyüsho Kökyüroku (1999), 174–184. Free resolutions of coordinate rings of projective varieties and related topics (Japanese) (Kyoto, 1998)

  36. Villarreal, R.H.: Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 238. Marcel Dekker Inc, New York (2001)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nate Dean for helpful conversations regarding graph theory and the anonymous referees for useful comments and suggestions. The first author would also like to thank the Department of Mathematics at Texas State University for its hospitality while some of the work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louiza Fouli.

Additional information

The first author was partially supported by a grant from the Simons Foundation, Grant #244930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouli, L., Morey, S. A lower bound for depths of powers of edge ideals. J Algebr Comb 42, 829–848 (2015). https://doi.org/10.1007/s10801-015-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0604-3

Keywords

Mathematics Subject Classification

Navigation