Skip to main content
Log in

Wearable cellulose textile matrix self-powered biosensor sensing lactate in human sweat

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, a self-powered lactate biosensor (SPLBs) was assembled to detect lactate in sweat based on flexible textile matrix enzymatic electrodes. A porous three-dimensional electrode with high flexibility and electrical conductivity was obtained by decorating composites of reduced graphene oxide and carboxylate multiwalled carbon nanotubes onto a cellulose fabric substrate. The excellent enzyme embedding method using a gel electrolyte showed a Michaelis–Menten constant of 1.46 mM, indicating the high enzymatic activity of lactate dehydrogenase. Moreover, the assembled (SPLBs) displayed a sensitivity of 3.16 µW mM−1 cm−2 with a linear range of 0–10 mM and a detection limit of 9.49 µM. Additionally, the biosensor has good tensile flexural stability, selectivity, and long-term stability. When integrated into clothing, the (SPLBs) recovered 91.5–102.3% of lactate from real sweat, with a relative standard deviation of less than 4.16%. This biosensor is promising for sensing lactate in human sweat.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng Y, Wang K, Xu H, Li T, Jin Q, Cui D (2021) Recent developments in sensors for wearable device applications. Anal Bioanal Chem 413:6037–6057. https://doi.org/10.1007/s00216-021-03602-2

    Article  CAS  PubMed  Google Scholar 

  2. Huang X et al (2022) Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Design and Manufacturing 5(1):201–209. https://doi.org/10.1007/s42242-021-00156-1

    Article  CAS  Google Scholar 

  3. Wang F, Cai R, Tan W (2023) Self-powered biosensor for a highly efficient and ultrasensitive dual-biomarker assay. Anal Chem 95(14):6046–6052. https://doi.org/10.1021/acs.analchem.3c00097

    Article  CAS  PubMed  Google Scholar 

  4. Bollella P, Boeva Z, Latonen R-M, Kano K, Gorton L, Bobacka J (2021) Highly sensitive and stable fructose self-powered biosensor based on a self-charging biosupercapacitor. Biosens Bioelectron 176:112909. https://doi.org/10.1016/j.bios.2020.112909

    Article  CAS  PubMed  Google Scholar 

  5. Han O, Jiang D, Fan Y, Wang ZL, Li Z (2021) Self-powered technology for next-generation biosensor. Sci Bull 66:1709–1712. https://doi.org/10.1016/j.scib.2021.04.035

    Article  CAS  Google Scholar 

  6. Tong C, Liu H, Mo Y, Li J, Liu X, Pang L (2023) In-situ growth of enzyme/copper phosphate hybrids on carbon cloth surface as self-powered electrochemical glucose biosensor. Biochem Eng J 193:108860. https://doi.org/10.1016/j.bej.2023.108860

    Article  CAS  Google Scholar 

  7. Yi J, Xianyu Y (2022) Gold nanomaterials-implemented wearable sensors for healthcare applications. Adv Funct Mater 32(19):2113012. https://doi.org/10.1002/adfm.202113012

    Article  CAS  Google Scholar 

  8. Promphet N, Ummartyotin S, Ngeontae W, Puthongkham P, Rodthongkum N (2021) Non-invasive wearable chemical sensors in real-life applications. Analytica Chimica Acta 1179:338643. https://doi.org/10.1016/j.aca.2021.338643

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Y et al (2023) Hemocytes in blue mussel Mytilus edulis adopt different energy supply modes to cope with different BDE-47 exposures,. Sci Total Environ 885:163766. https://doi.org/10.1016/j.scitotenv.2023.163766

    Article  CAS  PubMed  Google Scholar 

  10. Schuck A, Kim HE, Moreira JK, Lora PS, Kim Y-S (2021) A graphene-based enzymatic biosensor using a common-gate field-effect transistor for l-lactic acid detection in blood plasma samples. Sensors 21(5):1852. https://doi.org/10.3390/s21051852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A BG, C CC, G LR, D OA, A AJ (2022) Tracing the lactate shuttle to the mitochondrial reticulum. Exp Mol Med 54:1–16. https://doi.org/10.1038/s12276-022-00802-3

    Article  CAS  Google Scholar 

  12. Zhukova GV, Sutormin OS, Sukovataya IE, Maznyak NV, Kratasyuk VA (2023) Bioluminescent-triple-enzyme-based biosensor with lactate dehydrogenase for non-invasive training load monitoring. Sensors 23(5):2865. https://doi.org/10.3390/s23052865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Golveia JCS, Bara MTF, Santiago MF, Campos LC, Schimidt F (2020) Cocoa Agro-Industrial Residue (Theobroma cacao) as Inducer of the Production of Fungal Laccase and Kojic Acid for Application in the Biodegradation of 17-α-Ethinylestradiol,. J Braz Chem Soc 31(10):2023–2029. https://doi.org/10.21577/0103-5053.20200102

    Article  CAS  Google Scholar 

  14. Higashi M, Toyodome T, Kano K, Amao Y (2023) Photoelectrochemical lactate production from pyruvate via in situ NADH regeneration over a hybrid system of CdS photoanode and lactate dehydrogenase,. Electrochim Acta 460:142590. https://doi.org/10.1016/j.electacta.2023.142590

    Article  CAS  Google Scholar 

  15. Shortall K et al (2023) Coupled immobilized bi-enzymatic flow reactor employing cofactor regeneration of NAD(+) using a thermophilic aldehyde dehydrogenase and lactate dehydrogenase. Green Chem 25(11):4553–4564. https://doi.org/10.1039/d3gc01536j

    Article  CAS  Google Scholar 

  16. Zhang J et al (2021) Self-healing mechanism and conductivity of the hydrogel flexible sensors: a review. Gels 7(4):216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song Z et al (2023) Flexible and wearable biosensors for monitoring health conditions. Biosens-Basel 13(6):630. https://doi.org/10.3390/bios13060630

    Article  CAS  Google Scholar 

  18. Ma J et al (2022) Oil-water self-assembly engineering of Prussian blue/quantum dots decorated graphene film for wearable textile biosensors and photoelectronic unit. Chem Eng J 427:131824. https://doi.org/10.1016/j.cej.2021.131824

    Article  CAS  Google Scholar 

  19. Wang R, Zhai Q, An T, Gong S, Cheng W (2021) Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 222:121484. https://doi.org/10.1016/j.talanta.2020.121484

    Article  CAS  PubMed  Google Scholar 

  20. Qin H, Wang Z, Yu Q, Xu Q, Hu X-Y (2022) Flexible dibutyl phthalate aptasensor based on self-powered CNTs-rGO enzymatic biofuel cells,. Sens Actuators B-Chem 371:13246. https://doi.org/10.1016/j.snb.2022.132468

    Article  CAS  Google Scholar 

  21. Jiang D et al (2022) In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat,. Biosens Bioelectron 210:114303. https://doi.org/10.1016/j.bios.2022.114303

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Su Y, Zhu X, Ye D, Chen R, Liao Q (2022) Flexible enzymatic biofuel cell based on 1, 4-naphthoquinone/MWCNT-Modified bio-anode and polyvinyl alcohol hydrogel electrolyte,. Biosens Bioelectron 198:113833. https://doi.org/10.1016/j.bios.2021.113833

    Article  CAS  PubMed  Google Scholar 

  23. Fan S et al (2022) Stretchable and bendable textile matrix based on cellulose fibers for wearable self-powered glucose biosensors. Cellulose 29(16):8919–8935. https://doi.org/10.1007/s10570-022-04820-2

    Article  CAS  Google Scholar 

  24. Paik JJ, Jang B, Nam S, Guo LJ (2023) A Transparent Poly(vinyl alcohol) Ion-Conducting Organohydrogel for Skin-Based Strain-Sensing Applications. Adv Healthc Mater 12:2300076. https://doi.org/10.1002/adhm.202300076

    Article  CAS  Google Scholar 

  25. Zhang J et al (2023) High-Energy-Density Zinc-Air Microbatteries with Lean PVA-KOH-K2CO3 Gel Electrolytes,. Acs Appl Mater Interfaces 15(5):6807–6816. https://doi.org/10.1021/acsami.2c19970

    Article  CAS  PubMed  Google Scholar 

  26. Rahmani S, Olad A, Rahmani Z (2023) Preparation of self-healable nanocomposite hydrogel based on Gum Arabic/gelatin and graphene oxide: study of drug delivery behavior. Polym Bull 80(4):4117–4138. https://doi.org/10.1007/s00289-022-04247-6

    Article  CAS  Google Scholar 

  27. Arularasu MV, Sendhil M, Rajendran TV, Mani G, Aljuwayid AM, Habila MA (2022) Recent advantages of zinc oxide/carbon nanotubes/reduced graphene oxide based nanocomposite for the visible light photodegradation. Inorg Chem Commun 139:109332. https://doi.org/10.1016/j.inoche.2022.109332

    Article  CAS  Google Scholar 

  28. Teimuri-Mofrad R, Hadi R, Abbasi H (2019) Synthesis and characterization of ferrocene-functionalized reduced graphene oxide nanocomposite as a supercapacitor electrode material. J Organomet Chem 880:355–362

    Article  CAS  Google Scholar 

  29. da Silva AP, do Amaral Montanheiro TL, Montagna LS, Andrade PF, Duran N, Lemes AP (2019) Effect of carbon nanotubes on the biodegradability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites,. J Appl Polym Sci 136:48020. https://doi.org/10.1002/app.48020

    Article  CAS  Google Scholar 

  30. Rajaitha PM, Shamsa K, Sheebha I, Vidhya B, Maheskumar V, Rajesh S (2019) Influence of the positioning of the incorporated carbon nanostructures on the morphology and photocatalytic activity of microwave synthesized ZnO nanorods. J Nanosci Nanotechnol 19(8):5303–5309. https://doi.org/10.1166/jnn.2019.16836

    Article  CAS  PubMed  Google Scholar 

  31. Alagumalai K et al (2022) A portable advanced electrocatalyst for polyphenolic chlorogenic acid evaluation in food samples. Chem Eng J 435:134796. https://doi.org/10.1016/j.cej.2022.134796

    Article  CAS  Google Scholar 

  32. Wang H, Xie Y (2022) Hydrogen bond enforced polyaniline grown on activated carbon fibers substrate for wearable bracelet supercapacitor. J Energy Storage 52:105042. https://doi.org/10.1016/j.est.2022.105042

    Article  Google Scholar 

  33. Zafar MN, Aslam I, Ludwig R, Xu G, Gorton L (2019) An efficient and versatile membraneless bioanode for biofuel cells based on Corynascus thermophilus cellobiose dehydrogenase,. Electrochim Acta 295:316–324. https://doi.org/10.1016/j.electacta.2018.10.047

    Article  CAS  Google Scholar 

  34. Sun H et al (2023) Live-cell imaging reveals redox metabolic reprogramming during zygotic genome activation. J Cell Physiol 238(9):2039–2049. https://doi.org/10.1002/jcp.31054

    Article  CAS  PubMed  Google Scholar 

  35. Shen F et al (2019) Two-dimensional graphene paper supported flexible enzymatic fuel cells. Nanoscale Adv 1(7):2562–2570. https://doi.org/10.1039/c9na00178f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang L-L, Shao H-H, Wang W-J, Zhang J-R, Zhu J-J (2018) Nitrogen-doped hollow carbon nanospheres for high-energy-density biofuel cells and self-powered sensing of microRNA-21 and microRNA-141. Nano Energy 44:95–102. https://doi.org/10.1016/j.nanoen.2017.11.055

    Article  CAS  Google Scholar 

  37. Chelliah M, Nesakumar N, Thandavan K, Sethuraman S, Krishnan UM, Rayappan JBB (2014) An Electrochemical Biosensor with Nano-Interface for Lactate Detection Based on Lactate Dehydrogenase Immobilized on Iron Oxide Nanoparticles. Nanosci Nanatechnol Lett 6(3):242–249. https://doi.org/10.1166/nnl.2014.1744

    Article  CAS  Google Scholar 

  38. Iacovino LG et al (2022) Allosteric transitions of rabbit skeletal muscle lactate dehydrogenase induced by pH-dependent dissociation of the tetrameric enzyme. Biochim 199:23–35. https://doi.org/10.1016/j.biochi.2022.03.008

    Article  CAS  Google Scholar 

  39. Jeyabarathi P, Rajendran L, Lyons MEG (2022) Reaction-diffusion in a packed-bed reactors: Enzymatic isomerization with Michaelis-Menten Kinetics. J Electroanal Chem 910:116184. https://doi.org/10.1016/j.jelechem.2022.116184

    Article  CAS  Google Scholar 

  40. Hui Y, Wang H, Zuo W, Ma X (2022) Spider nest shaped multi-scale three-dimensional enzymatic electrodes for glucose/oxygen biofuel cells,. Int J Hydrogen Energy 47(9):6187–6199. https://doi.org/10.1016/j.ijhydene.2021.11.2100360-3199

    Article  CAS  Google Scholar 

  41. Hu T et al (2021) A pH-responsive ultrathin Cu-based nanoplatform for specific photothermal and chemodynamic synergistic therapy,. Chem Sci 12(7):2594–2603. https://doi.org/10.1039/d0sc06742c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hui Y, Ma X, Qu F (2019) Flexible glucose/oxygen enzymatic biofuel cells based on three-dimensional gold-coated nickel foam. J Solid State Electrochem 23(1):169–178. https://doi.org/10.1007/s10008-018-4099-4

    Article  CAS  Google Scholar 

  43. Wan J, Mi L, Tian Z, Li Q, Liu S (2020) A single-liquid miniature biofuel cell with boosting power density via gas diffusion bioelectrodes,. J Mater Chem B 8(16):3550–3556. https://doi.org/10.1039/c9tb02100k

    Article  CAS  PubMed  Google Scholar 

  44. Yang L et al (2022) A novel strategy for the detection of pyruvate in fermentation processes based on well-distributed enzyme-inorganic hybrid nanoflowers on thiol graphene modified gold electrodes,. Electrochim Acta 427:140855. https://doi.org/10.1016/j.electacta.2022.140855

    Article  CAS  Google Scholar 

  45. Liu H et al (2023) A peptide-target-aptamer electrochemical biosensor for norovirus detection using a black phosphorous nanosheet@Ti3C2-Mxene nanohybrid and magnetic covalent organic framework. Talanta 258:124433. https://doi.org/10.1016/j.talanta.2023.124433

    Article  CAS  PubMed  Google Scholar 

  46. Duong HD, Rhee JI (2021) Ratiometric fluorescent biosensors for glucose and lactate using an oxygen-sensing membrane. Biosensors-Basel 11(7):208. https://doi.org/10.3390/bios11070208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fitriana M, Hiraka K, Ikebukuro K, Sode K, Tsugawa W (2022) A Thiol-reactive Phenazine Ethosulfate-A Novel Redox Mediator for Quasi-direct Electron-transfer-type Sensors. Sens Mater 34(6):2105–2124

    CAS  Google Scholar 

  48. Liu M, Yang M, Wang M, Wang H, Cheng J (2022) A flexible dual-analyte electrochemical biosensor for salivary glucose and lactate detection. Biosensors 12(4):210. https://doi.org/10.3390/bios12040210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Payne ME, Zamarayeva A, Pister VI, Yamamoto NAD, Arias AC (2019) Yamamoto NAD, Arias AC “Printed, Flexible Lactate Sensors: Design Considerations Before Performing On-Body Measurements. Scientific reports 9:13720. https://doi.org/10.1038/s41598-019-49689-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maduraiveeran G, Chen A (2021) Design of an enzyme-mimicking NiO@ Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochimica Acta 368:137612. https://doi.org/10.1016/j.electacta.2020.137612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ph.D. Research Initiation Fund of Xi’an Polytechnic University (No: 310/107020509 and No: 310/107020555); Natural Science Basic Research Program of Shaanxi (Program No. 2021JQ-663, 2023-JC-QN-0565 and No. 2021JQ-671); and The Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 21JK0662) and National Natural Science Foundation of China (NO. 22208256). The authors declare that they had no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

ZX, WZ, and YH were mainly responsible for the experiments and writing of the article. HL, LQ, and RM were responsible for the drawing of the article. QW, HL, and HW were responsible for the revisions and details of the article.

Corresponding authors

Correspondence to Wei Zuo or Yuchen Hui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Zuo, W., Li, H. et al. Wearable cellulose textile matrix self-powered biosensor sensing lactate in human sweat. J Appl Electrochem 54, 1137–1152 (2024). https://doi.org/10.1007/s10800-023-02010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02010-x

Keywords

Navigation