Skip to main content

Advertisement

Log in

Recent progress in the fabrication of nanostructured zinc-based ternary metal oxides for high-performance lithium-ion batteries

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 17 March 2023

This article has been updated

Abstract

Great efforts have been made to develop the fabrication of zinc-based ternary metal oxides used in lithium-ion batteries due to their excellent properties of good electrochemical activities, stable chemical structures, and high specific capacities in recent decades. Here, we reviewed the synthetic methods of zinc-based ternary metal oxides and their application in high-performance lithium-ion batteries, including effects of synthesis factors on morphologies and electrochemical properties of the materials. Meanwhile, various electrochemical and physical characterization techniques were used to characterize the Li-storage electrochemical processes of electrodes. Metal ion exchange methods, as popular and convenient synthesis ways, were used to synthesize zinc-based ternary metal oxides based on readily synthesized metal compounds as templates and metal ion sources by liquid phase cation exchange in the last decade. We key described the alcohol solvothermal zinc ion exchange reaction process and discussed effects of Zn/Ti mole ratios on structures and Li-storage electrochemical performance of the materials. Accordingly, we also predicted on the future development prospects of zinc-based ternary metal oxides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Mukherjee R, Thomas AV, Krishnamurthy A (2012) Photothermally reduced graphene as high-power anodes for lithium ion batteries. ACS Nano 6:7867. https://doi.org/10.1021/nn303145j

    Article  CAS  PubMed  Google Scholar 

  2. Lu QQ, Jie YL, Meng XQ et al (2021) Carbon materials for stable Li metal anodes: challenges, solutions, and outlook. Carbon Energy 3:957. https://doi.org/10.1002/cey2.147

    Article  CAS  Google Scholar 

  3. Wang J, Zhang J, Duan SR et al (2022) Interfacial lithium-nitrogen bond catalyzes sulfide oxidation reactions in high-loading Li2S cathode. Chem Eng J 429:132352. https://doi.org/10.1016/j.cej.2021.132352

    Article  CAS  Google Scholar 

  4. Yi J, Guo SH, He P et al (2017) Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries. Energy Environ Sci 10:860. https://doi.org/10.1039/C6EE03499C

    Article  CAS  Google Scholar 

  5. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529. https://doi.org/10.1039/C6CS00776G

    Article  CAS  PubMed  Google Scholar 

  6. Xu XL, Hui KS, Dinh DA et al (2019) Recent advances in hybrid sodium-air batteries. Mater Horiz 6:1306. https://doi.org/10.1039/C8MH01375F

    Article  CAS  Google Scholar 

  7. Chen C, Cheng D, Liu SJ et al (2020) Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery. Energy Storage Mater 24:402. https://doi.org/10.1016/j.ensm.2019.07.028

    Article  Google Scholar 

  8. Ming J, Guo J, Xia C et al (2019) Zinc-ion batteries: materials, mechanisms, and applications. Mat Sci Eng R 135:58. https://doi.org/10.1016/j.mser.2018.10.002

    Article  Google Scholar 

  9. Song M, Park S, Alamgir FM et al (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mat Sci Eng R 72:203. https://doi.org/10.1016/j.mser.2011.06.001

    Article  CAS  Google Scholar 

  10. Xu YF, Zhao Y, Ren J et al (2016) An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew Chem Int Ed 55:7979. https://doi.org/10.1002/anie.201601804

    Article  CAS  Google Scholar 

  11. Kim TH, Song WT, Son DY et al (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 7:2942. https://doi.org/10.1039/C8TA10513H

    Article  CAS  Google Scholar 

  12. ZhengY YYZ, Ou JH et al (2020) A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev 49:8790. https://doi.org/10.1039/D0CS00305K

    Article  Google Scholar 

  13. Qi W, Shapter JG, Wu Q et al (2017) Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspective. J Mater Chem A 5:19521. https://doi.org/10.1039/C7TA05283A

    Article  CAS  Google Scholar 

  14. Cha H, Kim J, Lee Y et al (2017) Issues and challenges facing flexible lithium ion batteries for practical application. Small 14:1702989. https://doi.org/10.1002/smll.201702989

    Article  CAS  Google Scholar 

  15. Arbizzani C, Damen L, Lazzari M et al (2013) Lithium ion batteries and supercapacitors for use in hybrid electric vehicles. In: Scrosati B, Abraham KM, van Schalkwijk WA, Hassoun J (eds) Lithium batteries: advanced technologies and applications. Wiley, Hoboken

    Google Scholar 

  16. Wu FX, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49:1569. https://doi.org/10.1039/C7CS00863E

    Article  CAS  PubMed  Google Scholar 

  17. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  18. Fan ZJ, Yan J, Wei T et al (2011) Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5:2787. https://doi.org/10.1021/nn200195k

    Article  CAS  PubMed  Google Scholar 

  19. Zhong SY, Liu HZ, Wei DH et al (2020) Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem Eng J 395:125054. https://doi.org/10.1016/j.cej.2020.125054

    Article  CAS  Google Scholar 

  20. Miroshnikov Y, Yang JF, Shokhen V et al (2018) Operando micro-raman study revealing enhanced connectivity of plasmonic metals decorated silicon anodes for lithium-ion batteries. ACS Appl Energy Mater 1:1096. https://doi.org/10.1021/acsaem.7b00220

    Article  CAS  Google Scholar 

  21. Chen HH, Xu HY, Zeng YY et al (2019) Quantification on growing mass of solid electrolyte interphase (SEI) and deposited Mn (II) on the silicon anode of LiMn2O4 full lithium-ion cells. ACS Appl Mater Interface 11:27839. https://doi.org/10.1021/acsami.9b07400

    Article  CAS  Google Scholar 

  22. Lee M, Reddi RKR, Choi JB et al (2020) In operando AFM characterization of mechanical property evolution of Si anode binders in liquid electrolyte. ACS Appl Energy Mater 3:1899. https://doi.org/10.1021/acsaem.9b02332

    Article  CAS  Google Scholar 

  23. Na R, Tian JH, Wang DD et al (2017) Improved electrochemical performances of LiSn2(PO4)3 anode material for lithium-ion battery prepared by solid-state method. J Power Sources 361:96. https://doi.org/10.1016/j.jpowsour.2017.06.071

    Article  CAS  Google Scholar 

  24. Liu LH, Xie F, Lyu J et al (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources 321:11. https://doi.org/10.1016/j.jpowsour.2016.04.105

    Article  CAS  Google Scholar 

  25. Li JT, Swiatowska J, Seyeux A et al (2010) XPS and ToF-SIMS study of Sn-Co alloy thin films as anode for lithium ion battery. J Power Sources 195:8251. https://doi.org/10.1016/j.jpowsour.2010.07.043

    Article  CAS  Google Scholar 

  26. Deng YF, Tang SD, Zhang QM et al (2011) Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. J Mater Chem 21:11987. https://doi.org/10.1039/C1JM11575H

    Article  CAS  Google Scholar 

  27. Wang ZY, Wang ZC, Liu WT et al (2013) Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ Sci 6:87. https://doi.org/10.1039/C2EE23330D

    Article  CAS  Google Scholar 

  28. Zhang YF, Xie MH, He YB et al (2021) Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries. Chem Eng J 420:130469. https://doi.org/10.1016/j.cej.2021.130469

    Article  CAS  Google Scholar 

  29. Ji LW, Xin HL, Kuykendall TR et al (2012) SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Phys Chem Chem Phys 14:6981. https://doi.org/10.1039/C2CP40790F

    Article  CAS  PubMed  Google Scholar 

  30. Stephenson T, Li Z, Olsen B et al (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7:209. https://doi.org/10.1039/C3EE42591F

    Article  CAS  Google Scholar 

  31. Han F, Zhang CZ, Yang JX et al (2016) Well-dispersed and porous FeP@C nanoplates with stable and ultrafast lithium storage performance through conversion reaction mechanism. J Mater Chem A 4:12781. https://doi.org/10.1039/C6TA04521A

    Article  CAS  Google Scholar 

  32. Li ZF, Zheng Y, Liu QY et al (2020) Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. J Mater Chem A 8:19113. https://doi.org/10.1039/D0TA06533A

    Article  CAS  Google Scholar 

  33. Dai QL, Chen JJ, Lu LY et al (2012) Pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications. Nano Lett 12:4187. https://doi.org/10.1021/nl301761w

    Article  CAS  PubMed  Google Scholar 

  34. Kadhim AA, Fanar HJ, Hamzeh Q et al (2019) Cubic aggregates of Zn2SnO4 nanoparticles and their application in dye-sensitized solar cells. Nano Energy 57:202. https://doi.org/10.1016/j.nanoen.2018.12.039

    Article  CAS  Google Scholar 

  35. Krishnan A, Vidyadharan D, Swaminathan S et al (2020) Co-electrodeposited Cu2ZnSnS4 thin films for P-N junction photovoltaics and dye sensitized solar cells. Mater Today Proc 25:122. https://doi.org/10.1016/j.matpr.2019.12.180

    Article  CAS  Google Scholar 

  36. Chen JJ, Lu LY, Wang WY (2012) Nanowires as photoanode for dye-sensitized solar cells and the improvement on open-circuit voltage. J Phys Chem C 116:10841. https://doi.org/10.1021/jp301770n

    Article  CAS  Google Scholar 

  37. Pan D, Ge SS, Zhao JK et al (2019) Synthesis and characterization of ZnNiIn layered double hydroxides derived mixed metal oxides with highly efficient photoelectrocatalytic activities. Ind Eng Chem Res 58:836. https://doi.org/10.1021/acs.iecr.8b04829

    Article  CAS  Google Scholar 

  38. Zhang WQ, Wang M, Zhao WJ et al (2013) Magnetic composite photocatalyst ZnFe2O4/BiVO4: synthesis, characterization, and visible-light photocatalytic activity. Dalton Trans 42:15464. https://doi.org/10.1039/C3DT52068D

    Article  CAS  PubMed  Google Scholar 

  39. Peng SJ, Wu YZ, Zhu PN et al (2011) Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. J Mater Chem 21:15718. https://doi.org/10.1039/C1JM12432C

    Article  CAS  Google Scholar 

  40. Zuo YH, Qin Y, Jin C et al (2013) Double-sided ZnO nanorod arrays on single-crystal Ag holed microdisks with enhanced photocataltytic efficiency. Nanoscale 5:4388. https://doi.org/10.1039/C3NR34102J

    Article  CAS  PubMed  Google Scholar 

  41. Fan BB, Hu AP, Chen XH et al (2016) Hierarchical porous ZnMn2O4 microspheres as a high-performance anode for lithium-ion batteries. Electrochim Acta 213:37. https://doi.org/10.1016/j.electacta.2016.07.030

    Article  CAS  Google Scholar 

  42. Yao LM, Hou XH, Hu SJ et al (2014) An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J Alloy Compds 585:398. https://doi.org/10.1016/j.jallcom.2013.09.066

    Article  CAS  Google Scholar 

  43. Chen JX, Liu W, Liu S et al (2017) Marine microalgaes-derived porous ZnMn2O4/C microspheres and performance evaluation as Li-ion battery anode by using different binders. Chem Eng J 308:1200. https://doi.org/10.1016/j.cej.2016.09.144

    Article  CAS  Google Scholar 

  44. Ma YT, Xie QS, Liu X et al (2015) Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries. Electrochim Acta 182:327. https://doi.org/10.1016/j.electacta.2015.09.102

    Article  CAS  Google Scholar 

  45. Qin YL, Zhang FF, Du XC et al (2015) Controllable synthesis of cube-like ZnSnO3@TiO2 nanostructures as lithium ion battery anodes. J Mater Chem A 3:2985. https://doi.org/10.1039/C4TA06055E

    Article  CAS  Google Scholar 

  46. Liu J, Xuan YX, Galpaya DGD et al (2018) A high-volumetric-capacity and high-areal-capacity ZnCo2O4 anode for Li-ion battery enabled by a robust biopolymer binder. J Mater Chem A 6:19455. https://doi.org/10.1039/C8TA07840H

    Article  CAS  Google Scholar 

  47. Chen RZ, Hu Y, Shen Z et al (2017) Highly mesoporous C nanofibers with graphitized pore walls fabricated via ZnCo2O4-induced activating-catalyzed-graphitization for long-lifespan lithium-ion batteries. J Mater Chem A 5:21679. https://doi.org/10.1039/C7TA05445A

    Article  CAS  Google Scholar 

  48. Cao HL, Zhou XF, Deng W et al (2018) Layer structured graphene/porous ZnCo2O4 composite film for high performance flexible lithium-ion batteries. Chem Eng J 343:654. https://doi.org/10.1016/j.cej.2018.03.001

    Article  CAS  Google Scholar 

  49. Sasidharachari K, Cho KY, Yoon S (2020) Mesoporous ZnMn2O4 nanospheres as a nonprecious bifunctional catalyst for Zn-Air batteries. ACS Appl Energy Mater 3:3293. https://doi.org/10.1021/acsaem.9b02294

    Article  CAS  Google Scholar 

  50. Zhang N, Cheng FY, Liu YC et al (2016) Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-Ion battery. J Am Chem Soc 138:12894. https://doi.org/10.1021/jacs.6b05958

    Article  CAS  PubMed  Google Scholar 

  51. Vadiyar MM, Kolekar SS, Chang JY et al (2017) Anchoring ultrafine ZnFe2O4/C nanoparticles on 3D ZnFe2O4 nanoflakes for boosting cycle stability and energy density of flexible asymmetric supercapacitor. ACS Appl Mater Interface 9:26016. https://doi.org/10.1021/acsami.7b06847

    Article  CAS  Google Scholar 

  52. Hou ZQ, Feng S, Hei P et al (2019) Morphology regulation of Li2O2 by flower-like ZnCo2S4 enabling high performance Li-O2 battery. J Power Sources 441:227168. https://doi.org/10.1016/j.jpowsour.2019.227168

    Article  CAS  Google Scholar 

  53. Yilmaz MS, Coşkun M, Şener T et al (2019) Silica coated ZnFe2O4 nanoparticles as cathode catalysts for the rechargeable lithium-air battery. Batter Supercaps 2:380. https://doi.org/10.1002/batt.201800095

    Article  CAS  Google Scholar 

  54. Hung TF, Mohamed SG, Shen CC et al (2013) Mesoporous ZnCo2O4 nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium-oxygen batteries in aprotic media. Nanoscale 5:12115. https://doi.org/10.1039/C3NR04271E

    Article  CAS  PubMed  Google Scholar 

  55. Mohamed SG, Tsai YQ, Chen CJ et al (2015) Ternary spinel MCo2O4 (M= Mn, Fe, Ni and Zn) porous nanorods as bifunctional cathode materials for lithium-O2 batteries. ACS Appl Mater Interface 7:12038. https://doi.org/10.1021/acsami.5b02180

    Article  CAS  Google Scholar 

  56. Li PF, Sun W, Yu QL et al (2015) An effective three-dimensional ordered mesoporous ZnCo2O4 as electrocatalyst for Li-O2 batteries. Mater Lett 158:84. https://doi.org/10.1016/j.matlet.2015.06.006

    Article  CAS  Google Scholar 

  57. Liu B, Xu W, Yan PF et al (2015) In situ-grown ZnCo2O4 on single-walled carbon nanotubes as air electrode materials for rechargeable lithium-oxygen batteries. Chemsuschem 8:3697. https://doi.org/10.1002/cssc.201500636

    Article  CAS  PubMed  Google Scholar 

  58. Kim JC, Lee GH, Lee S et al (2017) Tailored porous ZnCo2O4 nanofibrous electrocatalysts for lithium-oxygen batteries. Adv Mater Interfaces 5:1701234. https://doi.org/10.1002/admi.201701234

    Article  CAS  Google Scholar 

  59. Liu XJ, Hao YC, Shu J et al (2019) Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57:414. https://doi.org/10.1016/j.nanoen.2018.12.024

    Article  CAS  Google Scholar 

  60. Juan-Corpuz LMZD, Nguyen MT, Corpuz RD et al (2019) Porous ZnV2O4 nanowire for stable and high-rate lithium-ion battery anodes. ACS Appl Nano Mater 2:4247. https://doi.org/10.1021/acsanm.9b00703

    Article  CAS  Google Scholar 

  61. Li JM, Du K, Lai YQ et al (2017) ZnSb2O6: an advanced anode material for Li-ion batteries. J Mater Chem A 5:10843. https://doi.org/10.1039/C7TA02290E

    Article  CAS  Google Scholar 

  62. Chen RZ, Hu Y, Shen Z et al (2016) Controlled synthesis of carbon nanofibers anchored with ZnxCo3-xO4 nanocubes as binder-free anode materials for lithium-ion batteries. ACS Appl Mater Interface 8:2591. https://doi.org/10.1021/acsami.5b10340

    Article  CAS  Google Scholar 

  63. Dou XY, Chen M, Zai JT et al (2020) A facile synthesis of urchin-like ZnMn2O4 architectures with enhanced electrochemical lithium storage. ChemistrySelect 5:1491. https://doi.org/10.1002/slct.201904602

    Article  CAS  Google Scholar 

  64. Guo LY, Ru Q, Song X et al (2015) Pineapple-shaped ZnCo2O4 microspheres as anode materials for lithium ion batteries with prominent rate performance. J Mater Chem A 3:8683. https://doi.org/10.1039/C5TA00830A

    Article  CAS  Google Scholar 

  65. Yu M, Huang Y, Wang K et al (2018) Complete hollow ZnFe2O4 nanospheres with huge internal space synthesized by a simple solvothermal method as anode for lithium ion batteries. Appl Surf Sci 462:955. https://doi.org/10.1016/j.apsusc.2018.08.134

    Article  CAS  Google Scholar 

  66. Chen S, Yao MY, Wang F et al (2019) Facile microemulsion synthesis of mesoporous ZnMn2O4 submicrocubes as high-rate and long-life anodes for lithium ion batteries. Ceram Int 45:5594. https://doi.org/10.1016/j.ceramint.2018.12.019

    Article  CAS  Google Scholar 

  67. Xiao LF, Yang YY, Yin J et al (2009) Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J Power Sources 194:1089. https://doi.org/10.1016/j.jpowsour.2009.06.043

    Article  CAS  Google Scholar 

  68. Zhang T, Qiu HL, Zhang M et al (2017) A unique 2D-on-3D architecture developed from ZnMn2O4 and CMK-3 with excellent performance for lithium ion batteries. Carbon 123:717. https://doi.org/10.1016/j.carbon.2017.08.013

    Article  CAS  Google Scholar 

  69. Tang QM, Shi YH, Ding ZY et al (2020) Three-dimensional hierarchical graphene and CNT-coated spinel ZnMn2O4 as a high-stability anode for lithium-ion batteries. Electrochim Acta 338:135853. https://doi.org/10.1016/j.electacta.2020.135853

    Article  CAS  Google Scholar 

  70. Jin RY, Liu JP, Qiu HF et al (2020) Synthesis of porous nanosheet-assembled ZnFe2O4@polypyrrole yolk-shell microspheres as anode materials for high-rate lithium-ion batteries. J Electroanal Chem 863:114038. https://doi.org/10.1016/j.jelechem.2020.114038

    Article  CAS  Google Scholar 

  71. Jiang LX, Dong CW, Jin B et al (2019) ZnFe2O4@PPy core-shell structure for high-rate lithium-ion storage. J Electroanal Chem 851:113442. https://doi.org/10.1016/j.jelechem.2019.113442

    Article  CAS  Google Scholar 

  72. Li JF, Wang JZ, Wexler D et al (2013) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1:15292. https://doi.org/10.1039/C3TA13787B

    Article  CAS  Google Scholar 

  73. Liu YR, Bai J, Ma XJ et al (2014) Formation of quasi-mesocrystals ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J Mater Chem A 2:14236. https://doi.org/10.1039/C4TA02950J

    Article  CAS  Google Scholar 

  74. Chen XQ, Zhang YM, Lin HB et al (2016) Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J Power Sources 312:137. https://doi.org/10.1016/j.jpowsour.2016.02.056

    Article  CAS  Google Scholar 

  75. Wang NN, Ma XJ, Xu HY et al (2014) Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6:193. https://doi.org/10.1016/j.nanoen.2014.04.001

    Article  CAS  Google Scholar 

  76. Dang W, Wang F, Ding Y et al (2017) Synthesis and electrochemical properties of ZnMn2O4 microspheres for lithium-ion battery application. J Alloy Compds 690:72. https://doi.org/10.1016/j.jallcom.2016.07.304

    Article  CAS  Google Scholar 

  77. Zhang GQ, Yu L, Wu HB et al (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609. https://doi.org/10.1002/adma.201201779

    Article  CAS  PubMed  Google Scholar 

  78. Zou JJ, Liu B, Liu HQ et al (2018) Facile synthesis of interconnected mesoporous ZnMn2O4 nano-peanuts for Li-storage via distinct structure design. Mater Res Bull 107:468. https://doi.org/10.1016/j.materresbull.2018.08.019

    Article  CAS  Google Scholar 

  79. Chen C, Huang JC, Duh JG (2021) Self-template fabrication of multi-scaled ZnFe2O4 microspheres and their excellent lithium-ion storage properties. J Alloy Compds 862:158342. https://doi.org/10.1016/j.jallcom.2020.158342

    Article  CAS  Google Scholar 

  80. Xue DY, Xue FF, Lin XP et al (2019) Coordintation polymers derived general synthesis of multi-shelled hollow metal oxides for lithium ion batteries. Nanoscale 11:17478. https://doi.org/10.1039/C9NR05220H

    Article  CAS  PubMed  Google Scholar 

  81. Bai ZC, Fan N, Sun CH et al (2013) Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale 5:2442. https://doi.org/10.1039/C3NR33211J

    Article  CAS  PubMed  Google Scholar 

  82. Zhang YH, Zhang YW, Guo CL et al (2015) Porous ZnMn2O4 nanowires as an advanced anode material for lithium ion battery. Electrochim Acta 182:1140. https://doi.org/10.1016/j.electacta.2015.10.032

    Article  CAS  Google Scholar 

  83. Wu RB, Qian XK, Zhou K et al (2014) Porous spinel ZnxCo3-xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8:6297. https://doi.org/10.1021/nn501783n

    Article  CAS  PubMed  Google Scholar 

  84. Yuan CZ, Li JY, Hou LR et al (2014) Template-free fabrication of mesoporous hollow ZnMn2O4 sub-microspheres with enhanced lithium storage capability towards high-performance Li-ion batteries. Part Part Syst Char 31:613. https://doi.org/10.1002/ppsc.201300338

    Article  CAS  Google Scholar 

  85. Liu BH, Liu H, Liang MF et al (2017) Controlled synthesis of hollow octahedral ZnCo2O4 nanocages assembled by ultrathin 2D nanosheets for enhanced lithium storage. Nanoscale 9:17174. https://doi.org/10.1039/C7NR06259A

    Article  CAS  PubMed  Google Scholar 

  86. Zhao SQ, Guo ZQ, Yan K et al (2021) Towards high-energy-density lithium-ion batteries: strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater 34:716. https://doi.org/10.1016/j.ensm.2020.11.008

    Article  Google Scholar 

  87. Zuo WH, Luo MZ, Liu XS et al (2020) Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ Sci 13:4450. https://doi.org/10.1039/D0EE01694B

    Article  CAS  Google Scholar 

  88. Sun L, Liu YX, Shao R et al (2022) Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater 46:482. https://doi.org/10.1016/j.ensm.2022.01.042

    Article  Google Scholar 

  89. Salah M, Hall C, Murphy P et al (2021) Doped and reactive silicon thin film anodes for lithium ion batteries: a review. J Power Sources 506:230194. https://doi.org/10.1016/j.jpowsour.2021.230194

    Article  CAS  Google Scholar 

  90. Park CM, Kim JH, Kim H et al (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115. https://doi.org/10.1039/B919877F

    Article  CAS  PubMed  Google Scholar 

  91. Zhang WJ, Huang KJ (2017) A review of recent progress in molybdenum disulfide-based supercapacitors and batteries. Inorg Chem Front 4:1602. https://doi.org/10.1039/C7QI00515F

    Article  CAS  Google Scholar 

  92. Wei ZX, Wang L, Zhuo M et al (2018) Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A 6:12185. https://doi.org/10.1039/C8TA02695E

    Article  CAS  Google Scholar 

  93. Zhao JB, Zhang YY, Wang YH et al (2018) The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J Energy Storage 27:1536. https://doi.org/10.1016/j.jechem.2018.01.009

    Article  Google Scholar 

  94. Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652. https://doi.org/10.1039/C2EE03410G

    Article  CAS  Google Scholar 

  95. Yi TF, Yang SY, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3:5750. https://doi.org/10.1039/C4TA06882C

    Article  CAS  Google Scholar 

  96. Li XY, Chen LZ, Qu YQ et al (2018) Carbon-assisted conversion reaction-based oxide nanomaterials for lithium-ion batteries. Sustain Sustain Energy Fuels 2:1124. https://doi.org/10.1039/C7SE00620A

    Article  CAS  Google Scholar 

  97. Jiang XM, Chen YJ, Meng XK et al (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  98. Gong ZL, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223. https://doi.org/10.1039/C0EE00713G

    Article  CAS  Google Scholar 

  99. Kumar J, Neiber RR, Park JW et al (2022) Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: strategies for highly selective lithium recovery. Chem Eng J 431:133993. https://doi.org/10.1016/j.cej.2021.133993

    Article  CAS  Google Scholar 

  100. Ling JK, Karuppiah C, Krishnan SG et al (2021) Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review. Energy Fuel 35:10428. https://doi.org/10.1021/acs.energyfuels.1c01102

    Article  CAS  Google Scholar 

  101. Huang Z, Wang D, Lin Y et al (2014) Enhancing the high-rate performance of Li4Ti5O12 anode material for lithium-ion battery by a wet ball milling assisted solid-state reaction and ultra-high speed nano-pulverization. J Power Sources 266:60. https://doi.org/10.1016/j.jpowsour.2014.04.146

    Article  CAS  Google Scholar 

  102. Kim S, Noh JK, Aykol M et al (2016) Layered-layered-spinel cathode materials prepared by a high-Energy ball-milling process for lithium-ion batteries. ACS Appl Mater Interface 8:363. https://doi.org/10.1021/acsami.5b08906

    Article  CAS  Google Scholar 

  103. Zhu GZ, Li Q, Zhao YH et al (2017) Nanoporous TiNb2O7/C composite microspheres with three dimensional conductive network for long-cycle-life and high rate capability anode materials for lithium ion batteries. ACS Appl Mater Interface 9:41258. https://doi.org/10.1021/acsami.7b13246

    Article  CAS  Google Scholar 

  104. Lei SH, Fan HQ, Ren XH et al (2017) Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties. J Mater Chem C 5:4040. https://doi.org/10.1039/C7TC00815E

    Article  CAS  Google Scholar 

  105. Kim SW, Lee HW, Muralidharan P et al (2011) Electrochemical performance and ex-situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4:505. https://doi.org/10.1007/s12274-011-0106-0

    Article  CAS  Google Scholar 

  106. Feng CQ, Wang W, Chen X et al (2015) Synthesis and electrochemical properties of ZnMn2O4 anode for lithium-ion batteries. Electrochim Acta 178:847. https://doi.org/10.1016/j.electacta.2015.08.070

    Article  CAS  Google Scholar 

  107. Satilmis B, Uyar T (2019) Electrospinning of Ultrafine Poly(1-trimethylsilyl-1-propyne) [PTMSP] Fibers: Highly porous fibrous membranes for volatile organic compound removal. ACS Appl Polym Mater 1:787. https://doi.org/10.1021/acsapm.9b00027

    Article  CAS  Google Scholar 

  108. Zhang CL, Lv KP, Huang HT et al (2012) Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning. Nanoscale 4:5348. https://doi.org/10.1039/C2NR30736G

    Article  CAS  PubMed  Google Scholar 

  109. Grande S, Guyse JV, Nikiforov AY et al (2017) Atmospheric pressure plasma Jet treatment of poly-ε-caprolactone polymer solutions to improve electrospinning. ACS Appl Mater Interface 38:33080. https://doi.org/10.1021/acsami.7b08439

    Article  CAS  Google Scholar 

  110. McCann JT, Marquez M, Xia YN (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128:1436. https://doi.org/10.1021/ja056810y

    Article  CAS  PubMed  Google Scholar 

  111. Li D, Xia YN (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555. https://doi.org/10.1021/nl034039o

    Article  CAS  Google Scholar 

  112. Han C, Cao WQ, Cao MS (2020) Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries. Inorg Chem Front 7:4101. https://doi.org/10.1039/D0QI00892C

    Article  CAS  Google Scholar 

  113. Nada AA, Nasr M, Viter R et al (2017) Mesoporous ZnFe2O4@TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J Phys Chem C 121:24669. https://doi.org/10.1021/acs.jpcc.7b08567

    Article  CAS  Google Scholar 

  114. Luo W, Hu XL, Sun YM et al (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916. https://doi.org/10.1039/C2JM00094F

    Article  CAS  Google Scholar 

  115. Zheng ZM, Cheng YL, Yan XB et al (2014) Enhanced electrochemical properties of graphene wrapped ZnMn2O4 nanorods for lithium-ion batteries. J Mater Chem A 2:149. https://doi.org/10.1039/C3TA13511J

    Article  CAS  Google Scholar 

  116. Xu SY, Qin L, Fuz Z et al (2020) Template-free construction of hollow ZnFe2O4 nanotubes coated with a nano-carbon layer as a competitive anode for Li-ion batteries. Nanoscale Adv 2:2284. https://doi.org/10.1039/D0NA00294A

    Article  CAS  Google Scholar 

  117. Luo L, Qiao H, Chen K et al (2015) Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries. Electrochim Acta 177:283. https://doi.org/10.1016/j.electacta.2015.01.100

    Article  CAS  Google Scholar 

  118. Gao YJ, Yin LH, Kim SJ et al (2019) Enhanced lithium storage by ZnFe2O4 nanofibers as anode materials for lithium-ion battery. Electrochim Acta 296:565. https://doi.org/10.1016/j.electacta.2018.11.093

    Article  CAS  Google Scholar 

  119. Qiao H, Xia ZK, Fei YQ et al (2017) Electrospinning combined with hydrothermal synthesis and lithium storage properties of ZnFe2O4-graphene composite nanofifibers. Ceram Int 43:2136. https://doi.org/10.1016/j.ceramint.2016.10.194

    Article  CAS  Google Scholar 

  120. Qiao H, Li RR, Yu YT et al (2018) Fabrication of PANI-coated ZnFe2O4 nanofibers with enhanced electrochemical performance for energy storage. Electrochim Acta 273:282. https://doi.org/10.1016/j.electacta.2018.04.010

    Article  CAS  Google Scholar 

  121. Gao QL, Yuan ZX, Dong LX et al (2018) Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries. Electrochim Acta 270:417. https://doi.org/10.1016/j.electacta.2018.03.107

    Article  CAS  Google Scholar 

  122. Liu H, Wang XL, Xu H et al (2018) Controllable synthesis of nanostructured ZnCo2O4 as high-performance anode materials for lithium-ion batteries. RSC Adv 8:39377. https://doi.org/10.1039/C8RA08066F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Teh PF, Sharma Y, Pramana SS et al (2011) Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem 21:14999. https://doi.org/10.1039/C1JM12088C

    Article  CAS  Google Scholar 

  124. Teh PF, Sharma Y, Ko YW et al (2013) Tuning the morphology of ZnMn2O4 lithium ion battery anodes by electrospinning and its effect on electrochemical performance. RSC Adv 3:2812. https://doi.org/10.1039/C2RA22943A

    Article  CAS  Google Scholar 

  125. Yang GR, Xu X, Yan W et al (2014) Facile synthesis of interwoven ZnMn2O4 nanofibers by electrospinning and their performance in Li-ion batteries. Mater Lett 128:336. https://doi.org/10.1016/j.matlet.2014.04.157

    Article  CAS  Google Scholar 

  126. Dai ZX, Long ZW, Li RR et al (2020) Metal-organic framework-structured porous ZnCo2O4/C composite nanofibers for high-rate lithium-ion batteries. ACS Appl Energy Mater 12:12378. https://doi.org/10.1021/acsaem.0c02379

    Article  CAS  Google Scholar 

  127. Hou LR, Bao RQ, Denis DK et al (2019) Synthesis of ultralong ZnFe2O4@polypyrrole nanowires with enhanced electrochemical Li-storage behaviors for lithium-ion batteries. Electrochim Acta 306:198. https://doi.org/10.1016/j.electacta.2019.03.121

    Article  CAS  Google Scholar 

  128. Wang JN, Yang GR, Wang L et al (2016) Fabrication of the ZnFe2O4 fiber-in-tube and tubular mesoporous nanostructures via single-spinneret electrospinning: characterization, mechanism and performance as anodes for Li-ion batteries. Electrochim Acta 222:1176. https://doi.org/10.1016/j.electacta.2016.11.090

    Article  CAS  Google Scholar 

  129. Chakrabarty S, Mukherjee A, Su WN et al (2019) Improved bi-functional ORR and OER catalytic activity of reduced graphene oxide supported ZnCo2O4 microsphere. Int J Hydrogen Energy 44:1565. https://doi.org/10.1016/j.ijhydene.2018.11.163

    Article  CAS  Google Scholar 

  130. Li JF, Xiong SL, Li XW et al (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045. https://doi.org/10.1039/C2NR33576J

    Article  CAS  PubMed  Google Scholar 

  131. Feng YQ, Liu H, Lu QQ et al (2022) Designing hierarchical MnO/polypyrrole heterostructures to couple polysulfides adsorption and electrocatalysis in lithium-sulfur batteries. J Power Sources 520:230885. https://doi.org/10.1016/j.jpowsour.2021.230885

    Article  CAS  Google Scholar 

  132. Li L, Zhang YX, Li J et al (2019) Facile synthesis of yolk-shell structured ZnFe2O4 microspheres for enhanced electrocatalytic oxygen evolution reaction. Inorg Chem Front 6:511. https://doi.org/10.1039/C8QI01191E

    Article  CAS  Google Scholar 

  133. Hu LL, Qu BH, Li CC et al (2013) Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J Mater Chem A 1:5596. https://doi.org/10.1039/C3TA00085K

    Article  CAS  Google Scholar 

  134. Qiu YC, Yang SH, Deng H et al (2010) A novel nanostructured spinel ZnCo2O4 electrodematerial: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20:4439. https://doi.org/10.1039/C0JM00101E

    Article  CAS  Google Scholar 

  135. Yu J, Wang YL, Mou LH et al (2018) Nature-inspired 2D-mosaic 3D-gradient mesoporous framework: bimetal oxide dual-composite strategy toward ultra-stable and high-capacity lithium storage. ACS Nano 12:2035. https://doi.org/10.1021/acsnano.8b00168

    Article  CAS  PubMed  Google Scholar 

  136. Jiang ZJ, Cheng S, Rong HB et al (2017) General synthesis of MFe2O4/Carbon (M=Zn, Mn Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J Mater Chem A 5:23641. https://doi.org/10.1039/C7TA07097G

    Article  CAS  Google Scholar 

  137. Deng JJ, Yu XL, Qin XY et al (2018) Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage. Energy Storage Mater 11:184. https://doi.org/10.1016/j.ensm.2017.06.014

    Article  Google Scholar 

  138. Chen S, Feng XJ, Yao MY et al (2018) Rice-shaped porous ZnMn2O4 microparticles as advanced anode materials for lithium-ion batteries. Dalton Trans 47:11166. https://doi.org/10.1039/C8DT02353K

    Article  CAS  PubMed  Google Scholar 

  139. Chen YJ, Qu BH, Mei L et al (2012) Synthesis of ZnSnO3 mesocrystals from regular cube-like to sheet-like structures and their comparative electrochemical properties in Li-ion batteries. J Mater Chem 22:25373. https://doi.org/10.1039/C2JM33123C

    Article  CAS  Google Scholar 

  140. Zhen MM, Zhang X, Liu L (2016) Synthesis of hierarchical ZnO/ZnCo2O4 nanosheets with mesostructures for lithium-ion anodes. RSC Adv 6:43551. https://doi.org/10.1039/C6RA08290D

    Article  CAS  Google Scholar 

  141. Wang Z, Ru Q, Chen XQ et al (2017) Solvothermal fabrication of hollow nanobarrel-like ZnCo2O4 towards enhancng the electrochemical performance of rechargeable lithium-ion batteries. ChemElectroChem 4:2218. https://doi.org/10.1002/celc.201700420

    Article  CAS  Google Scholar 

  142. Fang ZB, Zhang LN, Qi H et al (2018) Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium-ion batteries. J Alloy Compds 762:480. https://doi.org/10.1016/j.jallcom.2018.05.259

    Article  CAS  Google Scholar 

  143. Guo XW, Lu X, Fang XP et al (2010) Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun 12:847. https://doi.org/10.1016/j.elecom.2010.04.003

    Article  CAS  Google Scholar 

  144. Wu L, Sun L, Li XW et al (2020) Mesoporous ZnCo2O4-CNT microflowers as bifunctional material for supercapacitive and lithium energy storage. Appl Surf Sci 506:144964. https://doi.org/10.1016/j.apsusc.2019.144964

    Article  CAS  Google Scholar 

  145. Li YZ, Meng YS, Liu XL et al (2019) Double-protected zinc ferrite nanospheres as high rate and stable anode materials for lithium ion batteries. J Power Sources 442:227256. https://doi.org/10.1016/j.jpowsour.2019.227256

    Article  CAS  Google Scholar 

  146. Luo P, Zhang HJ, Liu L et al (2016) Sandwich-like nanostructure of amorphous ZnSnO3 encapsulated in carbon nanosheets for enhanced lithium storage. Electrochim Acta 219:734. https://doi.org/10.1016/j.electacta.2016.10.085

    Article  CAS  Google Scholar 

  147. Ni TL, Zhong YJ, Sunarso J et al (2016) Optimal hydrothermal synthesis of hierarchical porous ZnMn2O4 microspheres with more porous core for lithium storage of improved performance. Electrochim Acta 207:58. https://doi.org/10.1016/j.electacta.2016.04.098

    Article  CAS  Google Scholar 

  148. Zheng C, Zeng LX, Wang ML et al (2014) Synthesis of hierarchical ZnV2O4 microspheres and its electrochemical properties. CrystEngComm 16:10309. https://doi.org/10.1039/C4CE01445F

    Article  CAS  Google Scholar 

  149. Rong HB, Xie GT, Cheng S et al (2016) Hierarchical porous ZnMn2O4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries. J Alloy Compds 679:231. https://doi.org/10.1016/j.jallcom.2016.04.056

    Article  CAS  Google Scholar 

  150. Wang MY, Huang Y, Chen XF et al (2017) Synthesis of nitrogen and sulfur co-doped graphene supported hollow ZnFe2O4 nanosphere composites for appplication in lithium-ion batteries. J Alloy Compds 691:407. https://doi.org/10.1016/j.jallcom.2016.08.285

    Article  CAS  Google Scholar 

  151. Yao LB, Deng HH, Huang QA et al (2017) Three-dimensional carbon-coated ZnFe2O4 nanospheres/nitrogen-doped graphene aerogels as anode for lithium-ion batteries. Ceram Int 43:1022. https://doi.org/10.1016/j.ceramint.2016.10.034

    Article  CAS  Google Scholar 

  152. Bai J, Li XG, Liu GZ et al (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012. https://doi.org/10.1002/adfm.201303442

    Article  CAS  Google Scholar 

  153. Dong YC, Xia Y, Chui YS et al (2015) Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J Power Sources 275:769. https://doi.org/10.1016/j.jpowsour.2014.11.005

    Article  CAS  Google Scholar 

  154. Yang TB, Zhang WX, Li LL et al (2017) In-situ synthesized ZnFe2O4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. Appl Surf Sci 425:978. https://doi.org/10.1016/j.apsusc.2017.07.152

    Article  CAS  Google Scholar 

  155. Zhao JY, Su JM, Liu SY et al (2017) Zn-Fe-O@C hollow microspheres as a high performance anode material for lithium-ion batteries. RSC Adv 7:5459. https://doi.org/10.1039/C6RA25629E

    Article  CAS  Google Scholar 

  156. Cong HP, Yu SH (2009) Shape control of cobalt carbonate particles by a hydrothermal process in a mixed solvent: an efficient precursor to nanoporous cobalt oxide architectures and their sensing property. Cryst Growth Des 9:210. https://doi.org/10.1021/cg8003068

    Article  CAS  Google Scholar 

  157. Lou XW, Yuan CL, Archer LA (2007) Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater 19:3328. https://doi.org/10.1002/adma.200700357

    Article  CAS  Google Scholar 

  158. Sui JH, Zhang C, Hong D et al (2012) Facile synthesis of MWCNT-ZnFe2O4 nanocomposites as anode materials for lithium ion batteries. J Mater Chem 22:13674. https://doi.org/10.1039/C2JM31905E

    Article  CAS  Google Scholar 

  159. Xu XH, Cao KZ, Wang YJ et al (2016) 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J Mater Chem A 4:6042. https://doi.org/10.1039/C6TA00723F

    Article  CAS  Google Scholar 

  160. Yao W, Xu ZX, Xu X et al (2018) Two-dimensional holey ZnFe2O4 nanosheet/reduced graphene oxide hybrids by selflink of nanoparticles for high-rate lithium storage. Electrochim Acta 292:390. https://doi.org/10.1016/j.electacta.2018.09.139

    Article  CAS  Google Scholar 

  161. Vijayalakshmi S, Elanthamilan E, Merlin JP et al (2021) Tuning the efficiency of CoFe2O4@rGO composite by encapsulating Ag nanoparticles for the photocatalytic degradation of methyl violet dye and energy storage systems. New J Chem 45:17642. https://doi.org/10.1039/D1NJ03410C

    Article  CAS  Google Scholar 

  162. Gu YX, Xuan YX, Zhang H et al (2019) A facile route to prepare mixed transition metal oxide yolk–shell microspheres for enhanced lithium storage. Dalton Trans 48:10604. https://doi.org/10.1039/C9DT01770D

    Article  CAS  PubMed  Google Scholar 

  163. Li L, Hu HL, Ding SJ (2018) Facile synthesis of ultrathin and perpendicular NiMn2O4 nanosheets on reduced graphene oxide as advanced electrodes for supercapacitors. Inorg Chem Front 5:1714. https://doi.org/10.1039/C8QI00121A

    Article  CAS  Google Scholar 

  164. Feng TT, Yang J, Dai SY et al (2021) Microemulsion synthesis of ZnMn2O4/Mn3O4 sub-microrods for Li-ion batteries and their conversion reaction mechanism. Trans Nonferrous Met Soc China 31:265. https://doi.org/10.1016/S1003-6326(21)65493-6

    Article  Google Scholar 

  165. Courtel FM, Duncan H, Abu-Lebdeh Y et al (2011) High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J Mater Chem 21:10206. https://doi.org/10.1039/C0JM04465B

    Article  CAS  Google Scholar 

  166. Zhou P, Zhong LP, Liu ZY et al (2022) Porous ZnMn2O4 hollow microrods: facile construction and excellent electrochemical performances for lithium ion batteries. Appl Surf Sci 578:152087. https://doi.org/10.1016/j.apsusc.2021.152087

    Article  CAS  Google Scholar 

  167. Cheng SK, Ru Q, Gao YQ et al (2021) Anionic defect-enriched ZnMn2O4 nanorods with boosting pseudocapacitance for high-efficient and durable Li/Na storage. Chem Eng J 406:126133. https://doi.org/10.1016/j.cej.2020.126133

    Article  CAS  Google Scholar 

  168. Chen XF, Huang Y, Huang HJ et al (2015) Silver-modified hollow ZnSnO3 boxes as high capacity anode materials for Li-ion batteries. Mater Lett 149:33. https://doi.org/10.1016/j.matlet.2015.02.060

    Article  CAS  Google Scholar 

  169. Duan JF, Hou SC, Chen SG et al (2014) Synthesis of amorphous ZnSnO3 hollow nanoboxes and their lithium storage properties. Mater Lett 122:261. https://doi.org/10.1016/j.matlet.2014.02.060

    Article  CAS  Google Scholar 

  170. Wang YK, Li D, Liu YS et al (2016) Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries. Electrochim Acta 203:84. https://doi.org/10.1016/j.electacta.2016.03.195

    Article  CAS  Google Scholar 

  171. Cai DP, Zhan HB, Wang TH (2017) MOF-derived porous ZnO/ZnFe2O4 hybrid nanostructures as advanced anode materials for lithium ion batteries. Mater Lett 197:241. https://doi.org/10.1016/j.matlet.2017.02.012

    Article  CAS  Google Scholar 

  172. Xie QS, Ma YT, Zhang XQ et al (2014) Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries. Electrochim Acta 141:374. https://doi.org/10.1016/j.electacta.2014.07.095

    Article  CAS  Google Scholar 

  173. Zhong XB, Yang ZZ, Wang HY et al (2016) A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J Power Sources 306:718. https://doi.org/10.1016/j.jpowsour.2015.12.102

    Article  CAS  Google Scholar 

  174. Cheng SK, Ru Q, Liu P et al (2019) Micro-emulsion strategy used to prepare soybean oil-tailored 1D porous ZnCo2O4 cuboid morphology providing a durable performance of the anodes of lithium ion batteries. J Alloy Compds 809:151703. https://doi.org/10.1016/j.jallcom.2019.151703

    Article  CAS  Google Scholar 

  175. Hou XH, Wang XY, Yao LM et al (2015) Facile synthesis of ZnFe2O4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance. New J Chem 39:1943. https://doi.org/10.1039/C4NJ01535E

    Article  CAS  Google Scholar 

  176. Zhang T, Liang H, Xie CD et al (2017) Morphology-controllable synthesis of spinel zinc manganate with highly reversible capability for lithium ion battery. Chem Eng J 326:820. https://doi.org/10.1016/j.cej.2017.06.043

    Article  CAS  Google Scholar 

  177. Yue HY, Du T, Wang QX et al (2018) Biomimetic synthesis polydopamine coated ZnFe2O4 composites as anode materials for lithium-ion batteries. ACS Omega 3:2699. https://doi.org/10.1021/acsomega.7b01752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wei XH, Chen DH, Tang WJ (2007) Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol-gel method. Mater Chem Phys 103:54. https://doi.org/10.1016/j.matchemphys.2007.01.006

    Article  CAS  Google Scholar 

  179. Adams AR, Pol VG, Varma A (2017) Tailored solution combustion synthesis of high performance ZnCo2O4 anode materials for lithium-ion batteries. Ind Eng Chem Res 56:7173. https://doi.org/10.1021/acs.iecr.7b00295

    Article  CAS  Google Scholar 

  180. Feng DY, Yang H, Guo XZ (2019) 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem Eng J 355:687. https://doi.org/10.1016/j.cej.2018.08.202

    Article  CAS  Google Scholar 

  181. Deng YH, Wei J, Sun ZK et al (2013) Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev 42:4054. https://doi.org/10.1039/C2CS35426H

    Article  CAS  PubMed  Google Scholar 

  182. Sasidharan M, Nakashima K, Gunawardhana N et al (2011) Novel titania hollow nanospheres of size 28 ± 1 nm using soft-templates and their application for lithium-ion rechargeable batteries. Chem Commun 47:6921. https://doi.org/10.1039/C1CC11902H

    Article  CAS  Google Scholar 

  183. Jiang BB, He YJ, Li B et al (2017) Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew Chem Int Ed 56:1869. https://doi.org/10.1002/ange.201611160

    Article  CAS  Google Scholar 

  184. Jiang BB, Han CP, Li B et al (2016) In-Situ Crafting of ZnFe2O4 Nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 2:2728. https://doi.org/10.1021/acsnano.5b07806

    Article  CAS  Google Scholar 

  185. Jiang BB, Pang XC, Li B et al (2015) Organic-inorganic nanocomposites via placing monodisperse ferroelectric nanocrystals in direct and permanent contact with ferroelectric polymers. J Am Chem Soc 137:11760. https://doi.org/10.1021/jacs.5b06736

    Article  CAS  PubMed  Google Scholar 

  186. Li HY, Lv LL, Wang WC et al (2019) A Network of porous carbon/ZnCo2O4 nanotubes derived from the shell-hybridized worm-like micelles for lithium storage. J Mater Chem A 7:22642. https://doi.org/10.1039/C9TA07869J

    Article  CAS  Google Scholar 

  187. Zhao CH, Shen Y, Qiu SE et al (2016) Hierarchical porous ZnMn2O4 derived from cotton substance as high-performance lithium ion battery anode. Micro Nano Lett 11:287. https://doi.org/10.1049/mnl.2016.0086

    Article  CAS  Google Scholar 

  188. He X, Sun HJ, Zhu MP et al (2017) N-Doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and ‘useful’ template of CaCO3 for VOC fast adsorption and small peptide enrichment. Chem Commun 53:3442. https://doi.org/10.1039/C7CC00242D

    Article  CAS  Google Scholar 

  189. He X, Liu PR, Liu J et al (2017) Facile synthesis of hierarchical N-doped hollow porous carbon whiskers with ultrahigh surface area via synergistic inner-outer activation for casein hydrolysate adsorption. J Mater Chem B 5:9211. https://doi.org/10.1039/C7TB02345F

    Article  CAS  PubMed  Google Scholar 

  190. Berrigan JD, McLachlan T, Deneault JR et al (2013) Conversion of porous anodic Al2O3 into freestanding, uniformly aligned, multi-wall TiO2 nanotube arrays for electrode applications. J Mater Chem A 1:128. https://doi.org/10.1039/C2TA01015A

    Article  CAS  Google Scholar 

  191. Zhu SQ, Chen QL, Yang C et al (2017) Biomorphic template-engaged strategy towards porous zinc manganate micro-belts as a competitive anode for rechargeable lithium-ion batteries. Int J Hydrogen Energy 42:14154. https://doi.org/10.1016/j.ijhydene.2017.04.197

    Article  CAS  Google Scholar 

  192. Liu YD, Goebl J, Yin YD (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42:2610. https://doi.org/10.1039/C2CS35369E

    Article  CAS  PubMed  Google Scholar 

  193. Lai XY, Halpert JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604. https://doi.org/10.1039/C1EE02426D

    Article  CAS  Google Scholar 

  194. Zhu MY, Cheng YK, Luo Q et al (2021) A review of synthetic approaches to hollow nanostructures. Mater Chem Front 5:2552. https://doi.org/10.1039/D0QM00879F

    Article  CAS  Google Scholar 

  195. Yue J, Gu X, Chen L et al (2014) General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries. J Mater Chem A 2:17421. https://doi.org/10.1039/C4TA03924F

    Article  CAS  Google Scholar 

  196. Zhang GQ, Lou XW (2014) Genernal synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew Chem Int Ed 126:9187. https://doi.org/10.1002/anie.201404604

    Article  CAS  Google Scholar 

  197. Wang JY, Yang NL, Tang HJ et al (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem Int Ed 125:6545. https://doi.org/10.1002/anie.201301622

    Article  CAS  Google Scholar 

  198. Deng JJ, Yu XL, Qin XY et al (2019) Carbon sphere-templated synthesis of porous yolk-shell ZnCo2O4 spheres for highperformance lithium storage. J Alloy Compds 780:65. https://doi.org/10.1016/j.jallcom.2018.11.331

    Article  CAS  Google Scholar 

  199. Zhang LX, Wang YL, Jiu HF et al (2015) Hollow core-shell ZnMn2O4 microspheres as a high-performance anode material for lithium-ion batteries. Ceram Int 41:9655. https://doi.org/10.1016/j.ceramint.2015.04.031

    Article  CAS  Google Scholar 

  200. Liang J, Hu H, Park H et al (2015) Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ Sci 8:1707. https://doi.org/10.1039/C5EE01125F

    Article  CAS  Google Scholar 

  201. Kim JG, Noh Y, Kim YM et al (2019) Formation of ordered macroporous ZnFe2O4 anode materials for highly reversible lithium storage. Chem Eng J 372:363. https://doi.org/10.1016/j.cej.2019.04.151

    Article  CAS  Google Scholar 

  202. Shao QG, Tang J, Lin YX et al (2013) Synthesis and characterization of graphene hollow spheres for application in supercapacitors. J Mater Chem A 1:15423. https://doi.org/10.1039/C3TA12789C

    Article  CAS  Google Scholar 

  203. Wang YF, Li KN, Xu YF et al (2013) Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells. Nanoscale 5:5940. https://doi.org/10.1039/C3NR01133J

    Article  CAS  PubMed  Google Scholar 

  204. Koo WT, Jang HY, Kim C et al (2017) MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. J Mater Chem A 5:22171. https://doi.org/10.1039/C7TA07573A

    Article  Google Scholar 

  205. Li SX, Chen J, Zheng FY et al (2013) Synthesis of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity. Nanoscale 5:12150. https://doi.org/10.1039/C3NR04043G

    Article  CAS  PubMed  Google Scholar 

  206. Yang MY, Cai QX, Liu C et al (2014) Monodispersed hollow platinum nanospheres: facile synthesis and their enhanced electrocatalysis for methanol oxidation. J Mater Chem A 2:13738. https://doi.org/10.1039/C4TA01434K

    Article  CAS  Google Scholar 

  207. Zhao B, Huang SY, Wang T et al (2015) Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries. J Power Sources 298:83. https://doi.org/10.1016/j.jpowsour.2015.08.043

    Article  CAS  Google Scholar 

  208. Li ZC, Wang D, Wei WX et al (2020) Batch-scale synthesis of porous zinc manganese oxide with large specific surface area for Li-ion battery anodes. Solid State Sci 108:106375. https://doi.org/10.1016/j.solidstatesciences.2020.106375

    Article  CAS  Google Scholar 

  209. Zhang Z, Zhu PP, Li C et al (2021) Needle-like cobalt phosphide arrays grown on carbon fiber cloth as a binder-free electrode with enhanced lithium storage performance. Chin Chem Lett 32:154. https://doi.org/10.1016/j.cclet.2020.09.051

    Article  CAS  Google Scholar 

  210. Du SY, Wu C, Ao LY et al (2021) Significantly enhanced lithium storage by in situ grown CoS2@MoS2 core-shell nanorods anchored on carbon cloth. Chem Eng J 420:127714. https://doi.org/10.1016/j.cej.2020.127714

    Article  CAS  Google Scholar 

  211. Cai DP, Wang DD, Liu B et al (2014) Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces 6:5050. https://doi.org/10.1021/am500060m

    Article  CAS  PubMed  Google Scholar 

  212. Huang TT, Lou Z, Lu Y et al (2019) Metal-organic-framework-derived MCo2O4 (M=Mn and Zn) nanosheet arrays on carbon cloth as integrated anodes for energy storage applications. ChemElectroChem 6:5836. https://doi.org/10.1002/celc.201901445

    Article  CAS  Google Scholar 

  213. Xuan HC, Li HS, Gao JH et al (2020) Construction of hierarchical core-shell ZnCo2O4@Ni-Co-S nanosheets with a microsphere structure on nickel foam for high-performance asymmetric supercapacitors. Appl Surf Sci 513:145893. https://doi.org/10.1016/j.apsusc.2020.145893

    Article  CAS  Google Scholar 

  214. Wang YJ, Zhang YZ, Ou JK et al (2016) Facile fabrication of reduced graphene oxide covered ZnCo2O4 porous nanowire arrays hierarchical structure on Ni-foam as a high performance anode for lithium-ion battery. RSC Adv 6:547. https://doi.org/10.1039/C5RA21916G

    Article  CAS  Google Scholar 

  215. Yuan JJ, Chen CH, Hao Y et al (2017) Facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 787:158. https://doi.org/10.1016/j.jelechem.2017.01.052

    Article  CAS  Google Scholar 

  216. Chen HX, Zhang QB, Wang JX et al (2014) Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSix nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy 10:245. https://doi.org/10.1016/j.nanoen.2014.09.020

    Article  CAS  Google Scholar 

  217. Hou XY, Bai S, Xue S et al (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh rate lithium-ion batteries. J Alloy Compds 711:592. https://doi.org/10.1016/j.jallcom.2017.04.062

    Article  CAS  Google Scholar 

  218. Yuan JJ, Chen CH, Hao Y et al (2017) Fabrication of three-dimensional porous ZnMn2O4 thin films on Ni foams through electrostatic spray deposition for high-performance lithium-ion battery anodes. J Alloy Compds 696:1174. https://doi.org/10.1016/j.jallcom.2016.12.094

    Article  CAS  Google Scholar 

  219. Qu BH, Hu LL, Li QH et al (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interface 6:731. https://doi.org/10.1021/am405238a

    Article  CAS  Google Scholar 

  220. Ren N, Jiu HF, Jiang LY et al (2018) Facile synthesis of hierarchical porous ZnMn2O4 rugby-balls on Ni foam for lithium-ion batteries with enhanced electrochemical properties. J Alloy Compds 740:28. https://doi.org/10.1016/j.jallcom.2017.12.362

    Article  CAS  Google Scholar 

  221. Yu H, Guan C, Rui XH et al (2014) Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries. Nanoscale 6:10556. https://doi.org/10.1039/C4NR03631J

    Article  CAS  PubMed  Google Scholar 

  222. Long H, Shi TL, Jiang SL et al (2014) Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. J Mater Chem A 2:3741. https://doi.org/10.1039/C3TA15021F

    Article  CAS  Google Scholar 

  223. Sun ZP, Ai W, Liu JL et al (2014) Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium ion battery performance. Nanoscale 6:6563. https://doi.org/10.1039/C4NR00533C

    Article  CAS  PubMed  Google Scholar 

  224. Li ZQ, Yin LW (2015) Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A 3:21569. https://doi.org/10.1039/C5TA05733G

    Article  CAS  Google Scholar 

  225. Liu TQ, Wang WQ, Yi MJ et al (2018) Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem Eng J 354:454. https://doi.org/10.1016/j.cej.2018.08.037

    Article  CAS  Google Scholar 

  226. Liu B, Zhang J, Wang XF et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005. https://doi.org/10.1021/nl300794f

    Article  CAS  PubMed  Google Scholar 

  227. Zhao ZJ, Tian GY, Trouillet V et al (2019) In Operando analysis of the charge storage mechanism in a conversion ZnCo2O4 anode and the application in flexible Li-ion batteries. Inorg Chem Front 6:1861. https://doi.org/10.1039/C9QI00356H

    Article  CAS  Google Scholar 

  228. Gu ZX, Wang RF, Nan HH et al (2015) Construction of unique Co3O4@CoMoO4 core/shell nanowire arrays on Ni foam by the action exchange method for high-performance supercapacitors. J Mater Chem A 3:14578. https://doi.org/10.1039/C5TA01530H

    Article  CAS  Google Scholar 

  229. Kim JG, Lee SH, Kim Y et al (2013) Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties. ACS Appl Mater Interfaces 5:11321. https://doi.org/10.1021/am403546s

    Article  CAS  PubMed  Google Scholar 

  230. Huang J, Fang GZ, Liu K et al (2017) Controllable synthesis of highly uniform cuboid-shape MOFs and their derivatives for lithium-ion battery and photocatalysis applications. Chem Eng J 322:281. https://doi.org/10.1016/j.cej.2017.03.136

    Article  CAS  Google Scholar 

  231. Wang J, Ge ZY, Pei LJ et al (2019) ZnNb2O6 fibre surface as an efficiently product-selective controller for the near-UV-light-induced nitrobenzene reduction reaction. Catal Sci Technol 9:6681. https://doi.org/10.1039/C9CY01257E

    Article  Google Scholar 

  232. Hong ZS, Wei MD, Deng QX et al (2010) A new anode material made of Zn2Ti3O8 nanowires: synthesis and electrochemical properties. Chem Commun 46:740. https://doi.org/10.1039/B916681E

    Article  CAS  Google Scholar 

  233. Yuan CZ, Zhang LH, Hou LR et al (2015) Scalable room-temperature synthesis of mesoporous nanocrystalline ZnMn2O4 with enhanced lithium storage properties for lithium-ion batteries. Chem-Eur J 21:1262. https://doi.org/10.1002/chem.201404624

    Article  CAS  PubMed  Google Scholar 

  234. Zhang LH, Zhu SQ, Cao H et al (2015) Hierarchical porous ZnMn2O4 hollow nanotubes with enhanced lithium storage toward lithium-ion batteries. Chem-Eur J 21:10771. https://doi.org/10.1002/chem.201501421

    Article  CAS  PubMed  Google Scholar 

  235. Liu LX, Wang JW, Oswald S et al (2020) Decoding of oxygen network distortion in a layered high-rate anode by in situ investigation of a single microelectrode. ACS Nano 14:11753. https://doi.org/10.1021/acsnano.0c04483

    Article  CAS  PubMed  Google Scholar 

  236. Liao WM, Tian JH, Shan ZQ et al (2016) Facile synthesis of Zn2Ti3O8 hollow spheres based on ion exchange as promising anodes for lithium ion batteries. Electrochim Acta 216:94. https://doi.org/10.1016/j.electacta.2016.08.124

    Article  CAS  Google Scholar 

  237. Liao WM, Li WF, Tian JH et al (2019) Solvothermal ion exchange synthesis of ternary cubic phase Zn2T3O8 solid spheres as superior anodes for lithium ion batteries. Electrochim Acta 302:363. https://doi.org/10.1016/j.electacta.2019.02.014

    Article  CAS  Google Scholar 

  238. Chen HB, Ding LX, Xiao K et al (2016) Highly ordered ZnMnO3 nanotube arrays from “self-sacrificial” ZnO template as high-performance electrodes for lithium ion batteries. J Mater Chem A 4:16318. https://doi.org/10.1039/C6TA06748D

    Article  CAS  Google Scholar 

  239. Banoth P, Sohan A, Kandula C et al (2022) Microwave-assisted solvothermal route for one-step synthesis of pure phase bismuth ferrite microflowers with improved magnetic and dielectric properties. ACS Omega 7:12910. https://doi.org/10.1021/acsomega.2c00219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Sreekanth TVM, Nagajyothi PC, Devarayapalli KC et al (2020) Lilac flower-shaped ZnCo2O4 electrocatalyst for efficient methanol oxidation and oxygen reduction reactions in an alkaline medium. CrystEngComm 22:2849. https://doi.org/10.1039/D0CE00024H

    Article  CAS  Google Scholar 

  241. Wang YJ, Ke J, Zhang YW et al (2015) Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo2O4 anode materials for high-performance lithium-ion batteries. J Mater Chem A 3:24303. https://doi.org/10.1039/C5TA06949A

    Article  CAS  Google Scholar 

  242. Li YD, Teng YF, Zhang ZQ et al (2017) Microwave-assisted synthesis of novel nanostructured Zn3(OH)2V2O7·2H2O and Zn2V2O7 as electrode materials for supercapacitors. New J Chem 41:15298. https://doi.org/10.1039/C7NJ03262E

    Article  CAS  Google Scholar 

  243. Shih GH, Liu WR (2017) A facile microwave-assisted approach to the synthesis of flower-like ZnCo2O4 anode materials for Li-ion batteries. RSC Adv 7:42476. https://doi.org/10.1039/C7RA07660F

    Article  CAS  Google Scholar 

  244. Zhu YQ, Cao CB, Zhang JT et al (2015) Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application. J Mater Chem A 3:9556. https://doi.org/10.1039/C5TA00808E

    Article  CAS  Google Scholar 

  245. Yang X, Xue HT, Yang QD et al (2017) Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries. Chem Eng J 308:340. https://doi.org/10.1016/j.cej.2016.09.071

    Article  CAS  Google Scholar 

  246. Zhang LH, Wei T, Yue JM et al (2017) Ultra-small and highly crystallized ZnFe2O4 nanoparticles within double graphene networks for super-long life lithium-ion batteries. J Mater Chem A 5:11188. https://doi.org/10.1039/C7TA02726E

    Article  CAS  Google Scholar 

  247. Mondal A, Maiti S, Mahanty S et al (2017) Large-scale synthesis of porous NiCo2O4 and rGO-NiCo2O4 hollow-spheres with superior electrochemical performance as a faradaic electrode. J Mater Chem A 5:16854. https://doi.org/10.1039/C7TA03491A

    Article  CAS  Google Scholar 

  248. Oh SH, Kim JK, Kang YC et al (2018) Three-dimensionally ordered mesoporous multicomponent (Ni, Mo) metal oxide/N-doped carbon composite with superior Li-ion storage performance. Nanoscale 10:18734. https://doi.org/10.1039/C8NR06727A

    Article  CAS  PubMed  Google Scholar 

  249. Fan BB, Chen XH, Hu AP et al (2016) Facile synthesis of 3D plum candy-like ZnCo2O4 microspheres as a high-performance anode for lithium ion batteries. RSC Adv 6:79971. https://doi.org/10.1039/C6RA17316K

    Article  CAS  Google Scholar 

  250. Zhang LH, Zhu SQ, Cao H et al (2015) Ultrafast spray pyrolysis fabrication of a nanophase ZnMn2O4 anode towards high-performance Li-ion batteries. RSC Adv 5:13667. https://doi.org/10.1039/C4RA15898A

    Article  CAS  Google Scholar 

  251. Chen WM, Lu LY, Maloney S et al (2015) Coaxial Zn2GeO4@carbon nanowires directly grown on Cu foils as high-performance anodes for lithium ion batteries. Phys Chem Chem Phys 17:5109. https://doi.org/10.1039/C4CP05705H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of Jiangxi Province (20202BABL203003), the Science and Technology Project of Education Department of Jiangxi Province (GJJ201017), and the Key Science and Technology Project of Ji’an City (2020-03). The authors sincerely acknowledge the Elsevier, RSC, Wiley, and ACS publishers.

Author information

Authors and Affiliations

Authors

Contributions

We are glad to submit our manuscript to the Journal. Wenming Liao, as the first author, wrote the review and edited all of sections. Haihui Chen & Yingying Zeng, as the second and third authors, gave some suggestions to improve the quality this review. Limin Liu, as the forth author, proposed some guiding opinions on this review. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Wenming Liao or Limin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Missed author corrections are all updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Chen, H., Zeng, Y. et al. Recent progress in the fabrication of nanostructured zinc-based ternary metal oxides for high-performance lithium-ion batteries. J Appl Electrochem 53, 1077–1107 (2023). https://doi.org/10.1007/s10800-022-01832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01832-5

Keywords

Navigation