Skip to main content
Log in

Electrochemical oxidation of terbium(III) in aqueous media: influence of supporting electrolyte on oxidation potential and stability

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Apart from the generally dominant trivalent oxidation state, several lanthanides can occur in divalent or tetravalent states as well. Changing the valence state alters the chemical properties and, therefore, gives the opportunity to ease intragroup lanthanide separations. The hydrated terbium(III) ion has a highly positive reduction potential (E0 =  + 3.1 V vs. SHE), but it can be oxidized to its tetravalent state via ozonolysis or electrolysis, and stabilized in highly concentrated carbonate solutions. In this study, terbium(III) is electrochemically oxidized to terbium(IV) in aqueous carbonate, nitrate, and periodate media. Spectroscopic and elemental analysis were done to characterize terbium(IV) and to gain insight in the stability of these complexes in the aqueous electrolytes of carbonate, nitrate, and periodate. In all these electrolytes, oxidation and stabilization were achieved at different pH, terbium concentration, salt concentration and applied potentials. The most promising electrolyte was found to be carbonate, since it allowed to attain more concentrated and more stable terbium(IV) solutions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Binnemans K, Jones PT (2014) Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J Rare Earths 32:195–200. https://doi.org/10.1016/S1002-0721(14)60051-X

    Article  CAS  Google Scholar 

  2. Van de Voorde M, Van Hecke K, Cardinaels T, Binnemans K (2019) Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coord Chem Rev 382:103–125. https://doi.org/10.1016/j.ccr.2018.11.007

    Article  CAS  Google Scholar 

  3. Teo RD, Termini J, Gray HB (2016) Lanthanides: applications in cancer diagnosis and therapy. J Med Chem 59:6012–6024. https://doi.org/10.1021/acs.jmedchem.5b01975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Chang H, Xie J et al (2014) Recent developments in lanthanide-based luminescent probes. Coord Chem Rev 273–274:201–212. https://doi.org/10.1016/j.ccr.2014.02.001

    Article  CAS  Google Scholar 

  5. Cotton S (2006) Lanthanide and actinide chemistry and spectroscopy. John Wiley and Sons, New York, Uppingham, Rutland

    Book  Google Scholar 

  6. Van de Voorde M, Van Hecke K, Binnemans K, Cardinaels T (2018) Separation of samarium and europium by solvent extraction with an undiluted quaternary ammonium ionic liquid: towards high-purity medical samarium-153. RSC Adv 8:20077–20086. https://doi.org/10.1039/C8RA03279C

    Article  Google Scholar 

  7. Zuo Y, Liu Y, Chen J, Li DQ (2008) The separation of cerium(IV) from nitric acid solutions containing thorium(IV) and lanthanides (III) using pure [C8mim]PF6 as extracting phase. Ind Eng Chem Res 47:2349–2355. https://doi.org/10.1021/ie071486w

    Article  CAS  Google Scholar 

  8. Kedari CS, Pandit SS, Ramanujam A (1997) In situ electro-oxidation and liquid-liquid extraction of cerium(IV) from nitric acid medium using tributyl phosphate and 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate. J Radioanal Nucl Chem 222:141–147. https://doi.org/10.1007/BF02034260

    Article  CAS  Google Scholar 

  9. Borai EH, Shahr El-Din AM, El Afifi EM, et al. (2016) Subsequent separation and selective extraction of thorium (IV), iron (III), zirconium (IV) and cerium (III) from aqueous sulfate medium. South African J Chem 69:148–156 https://doi.org/10.17159/0379-4350/2016/v69a18

  10. Jelinek L, Wei Y, Arai T, Kumagai M (2007) Selective Eu(III) electro-reduction and subsequent separation of Eu(II) from rare earths(III) via HDEHP impregnated resin. Solvent Extr Ion Exch 25:503–513. https://doi.org/10.1080/07366290701415911

    Article  CAS  Google Scholar 

  11. Jelinek L, Wei Y, Arai T, Kumagai M (2008) Study on separation of Eu(II) from trivalent rare earths via electro-reduction and ion exchange. J Alloys Compd 451:341–343. https://doi.org/10.1016/j.jallcom.2007.04.139

    Article  CAS  Google Scholar 

  12. Van De Voorde M, Geboes B, Vander Hoogerstraete T et al (2019) Stability of europium(II) in aqueous nitrate solutions. Dalt Trans 48:14758–14768. https://doi.org/10.1039/c9dt03139a

    Article  CAS  Google Scholar 

  13. Zelić M (2003) Electrochemical reduction of europium (3+) at increasing concentrations of different salts. Part I. Voltammetric measurements. Croat Chem Acta 76:241–248

    Google Scholar 

  14. Donohue T (1977) Photochemical separation of europium from lanthanide mixtures in aqueous solution. J Chem Phys 5402:10–13. https://doi.org/10.1063/1.434656

    Article  Google Scholar 

  15. Qiu L-F, Kang X-H, Wang T-S (1991) A study on photochemical separation of rare earths: the separation of europium from an industrial concentrate material of samarium, europium, and gadolinium. Sep Sci Technol 26:199–221. https://doi.org/10.1080/01496399108050467

    Article  CAS  Google Scholar 

  16. Myasoedov BF, Kulyako YM, Sklyarenko IS (1975) Electrochemical reduction of europium in acetonitrile. J Inorg Nucl Chem 37:113–117 https://doi.org/10.1016/0022-1902(75)80136-9

  17. Rabockai T (1977) Electrochemical reduction of ytterbium in perchloric media. J Electroanal Chem Interfacial Electrochem 76:83–89 https://doi.org/10.1016/S0022-0728(77)80008-9

  18. Rabockai T, Luis LO (1980) Electrochemical reduction of Eu3+ in aqueous ethylene glycol solutions. Electrochim Acta 25:1041–1042. https://doi.org/10.1016/0013-4686(80)87012-5

    Article  CAS  Google Scholar 

  19. de Bulhões LO, Rabockai ST (1982) Electrochemical reduction of lanthanides in propylene carbonate. Electrochim Acta 27:1071–1073. https://doi.org/10.1016/0013-4686(82)80111-4

    Article  Google Scholar 

  20. Steeman E, Temmerman E, Verbeek F (1978) Electrochemical reduction of the lanthanide ions: Part I. First reduction step of ytterbium(III) in acidic 1 M NaClO4 solution. J Electroanal Chem Interfacial Electrochem 89:97–111 https://doi.org/10.1016/S0022-0728(78)80035-7

  21. Atanasyants AG, Seryogin AN (1995) The reaction of the electrochemical reduction Eu (III) + e- → Eu(II) in hydrochloric solution. Hydrometallurgy 37:367–374 https://doi.org/10.1016/0304-386X(94)00036-3

  22. Zhao HL, You QC, Chun AM (2012) Electrochemical oxidation of Ce(III) to Ce(IV) in mixed acid (H2SO4 and CH3SO3H). Adv Mater Res 588–589:90–94. https://doi.org/10.4028/www.scientific.net/amr.588-589.90

    Article  Google Scholar 

  23. Kiekens P, Steen L, Donche H, Temmerman E (1981) Kinetics of Ce(IV) reduction at gold, carbon and iridium electrodes. Electrochim Acta 26:841–845. https://doi.org/10.1016/0013-4686(81)85043-8

    Article  CAS  Google Scholar 

  24. Gupta R, Gamare J, Jayachandran K et al (2015) Electrochemical, thermodynamic and spectroscopic investigations of CeIII in a 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) ionic liquid. Eur J Inorg Chem 2015:4396–4401. https://doi.org/10.1002/ejic.201500671

    Article  CAS  Google Scholar 

  25. Knecht LA (1967) Oxidation of cerium(III) to cerium(IV) using a mixture of hot concentrated perchloric and sulfuric acids. Anal Chim Acta 39:349–355. https://doi.org/10.1016/S0003-2670(01)80514-6

    Article  CAS  Google Scholar 

  26. Binnemans K (2006) Chapter 229 applications of tetravalent cerium compounds. In: Gschneidner KA, Bunzli J-CG, Pecharsky VKBT (eds) Handbook on the physics and chemistry of rare earths. Elsevier, pp. 281–392

  27. Piro NA, Robinson JR, Walsh PJ, Schelter EJ (2014) The electrochemical behavior of cerium(III/IV) complexes: thermodynamics, kinetics and applications in synthesis. Coord Chem Rev 260:21–36. https://doi.org/10.1016/j.ccr.2013.08.034

    Article  CAS  Google Scholar 

  28. Modiba P, Crouch AM (2008) Electrochemical study of cerium(IV) in the presence of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetate (DTPA) ligands. J Appl Electrochem 38:1293–1299. https://doi.org/10.1007/s10800-008-9558-7

    Article  CAS  Google Scholar 

  29. Gompa TP, Ramanathan A, Rice NT, La Pierre HS (2020) The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalt Trans 49:15945–15987. https://doi.org/10.1039/d0dt01400a

    Article  CAS  Google Scholar 

  30. Frederick Smith G, Getz CA (1938) Cerate oxidimetry. Ind Eng Chem Anal Ed 10:191–195

    Article  Google Scholar 

  31. Wadsworth E, Duke FR, Goetz CA (1957) Present status of cerium(IV)-cerium(III) potentials. Anal Chem 29:1824–1825

    Article  CAS  Google Scholar 

  32. Wei H, Li Y, Zhang Z et al (2017) Selective extraction and separation of Ce (IV) and Th (IV) from RE(III) in sulfate medium using di(2-ethylhexyl)-N-heptylaminomethylphosphonate. Solvent Extr Ion Exch 35:117–129. https://doi.org/10.1080/07366299.2017.1292025

    Article  CAS  Google Scholar 

  33. Sedneva TA (2005) Cerium(III) electrooxidation in nitric acid solutions of rare-earth elements. Russ J Appl Chem 78:907–911. https://doi.org/10.1007/s11167-005-0418-5

    Article  CAS  Google Scholar 

  34. Yörükoğlu A, Girgin İ (2002) Recovery of europium by electrochemical reduction from sulfate solutions. Hydrometallurgy 63:85–91. https://doi.org/10.1016/S0304-386X(01)00215-8

    Article  Google Scholar 

  35. Peppard DF, Horwitz EP, Mason GW (1962) Comparative liquid-liquid extraction behaviour of europium (II) and europium (III). J Inorg Nucl Chem 24:429–439. https://doi.org/10.1016/0022-1902(62)80039-6

    Article  CAS  Google Scholar 

  36. Ying Y, Ru-Dong Y (1992) Synthesis and characterization of tetravalent terbium complexes of alkali terbium hexaoxidoiodates. Polyhedron 11:963–966. https://doi.org/10.1016/S0277-5387(00)83348-3

    Article  Google Scholar 

  37. Josse M, Dubois M, El-Ghozzi M et al (2005) Anti-KSbF6 structure of CaTbF6 and CdTbF6: a confirmation of the singular crystal chemistry of Tb4+ in fluorides. Acta Crystallogr Sect B Struct Sci 61:1–10. https://doi.org/10.1107/S0108768104026928

    Article  CAS  Google Scholar 

  38. Wang D, Qiu G, Jin X et al (2006) Electrochemical metallization of solid terbium oxide. Angew Chemie Int Ed 45:2384–2388. https://doi.org/10.1002/anie.200503571

    Article  CAS  Google Scholar 

  39. Avignant D, Largeau E, Gaumet V et al (1998) Recent progress in tetravalent terbium chemistry. J Alloys Compd 275–277:1–5. https://doi.org/10.1016/S0925-8388(98)00262-X

    Article  Google Scholar 

  40. Hobart DE (1981) Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements. Dissertation, University of Tennessee

  41. Hobart DE, Samhoun K, Young JP et al (1980) Stabilization of praseodymium(IV) and terbium(IV) in aqueous carbonate solution. Inorg Nucl Chem Lett 16:321–328. https://doi.org/10.1016/0020-1650(80)80069-9

    Article  CAS  Google Scholar 

  42. Propst RC (1974) Electrochemical oxidation of terbium(3) at the conducting glass electrode. J Inorg Nucl Chem 36:1085–1094. https://doi.org/10.1016/0022-1902(74)80218-6

    Article  CAS  Google Scholar 

  43. Varlashkin PG, Begun GM, Peterson JR (1985) On the nature of tetravalent terbium in carbonate-hydroxide solutions. J Less Common Met 109:123–134. https://doi.org/10.1016/0022-5088(85)90112-2

    Article  CAS  Google Scholar 

  44. Qiang S, Zhijian W, Chongli G (1995) Solvent extraction of terbium(III, IV) periodate complexes with quaternary amine. Solvent Extr Ion Exch 13:275–288. https://doi.org/10.1080/07366299508918274

    Article  CAS  Google Scholar 

  45. Qiang S, Zhijian W, Chongli G (1996) Solvent extraction of tetravalent terbium Tb(IV) and other trivalent rare earths with quaternary amine. In: International solvent extraction conference. Melbourne, pp. 605–610

  46. Li X, Dong W, Qi Y et al (1991) Studies on the stabilization of terbium(IV) in aqueous tetrametaphosphate solution. Polyhedron 10:1479–1483. https://doi.org/10.1016/S0277-5387(00)86069-6

    Article  CAS  Google Scholar 

  47. Rice NT, Popov IA, Russo DR et al (2019) Design, isolation, and spectroscopic analysis of a tetravalent terbium complex. J Am Chem Soc 141:13222–13233. https://doi.org/10.1021/jacs.9b06622

    Article  CAS  PubMed  Google Scholar 

  48. Willauer AR, Palumbo CT, Scopelliti R et al (2020) Stabilization of the oxidation state +IV in siloxide-supported terbium compounds. Angew Chemie - Int Ed 59:3549–3553. https://doi.org/10.1002/anie.201914733

    Article  CAS  Google Scholar 

  49. Palumbo CT, Zivkovic I, Scopelliti R, Mazzanti M (2019) Molecular complex of Tb in the +4 oxidation state. J Am Chem Soc 141:9827–9831. https://doi.org/10.1021/jacs.9b05337

    Article  CAS  PubMed  Google Scholar 

  50. Rao RR, Milliken SB, Robinson SL, Mann CK (1970) Anodic oxidation of lithium, cadmium, silver, and tetrabutylammonium nitrates. Anal Chem 42:1076–1080. https://doi.org/10.1021/ac60291a006

    Article  CAS  Google Scholar 

  51. Mishima H, Iwasita T, Macagno VA, Giordano MC (1973) The electrochemical oxidation of nitrate ion on platinum from silver nitrate in acetonitrile solutions—I. kinetic analysis. Electrochim Acta 18:287–292. https://doi.org/10.1016/0013-4686(73)80030-1

    Article  CAS  Google Scholar 

  52. Colombi M, Fiori G, Formaro L (1973) Electrochemical study of the anodic oxidation of nitrate ion on a platinum electrode in acetic acid. J Electroanal Chem Interfacial Electrochem 44:21–24. https://doi.org/10.1016/S0022-0728(73)80510-8

    Article  CAS  Google Scholar 

  53. Moeller T (1953) Inorganic chemistry. John Wiley and Sons, New York

    Google Scholar 

Download references

Acknowledgements

This research was funded by Research Foundation – Flanders (FWO) – SBO project Terbium Isotopes for Medical Applications in Flanders (Tb – IRMA – V, Grant number S005019N).

Funding

This study was funded by fonds wetenschappelijk onderzoek (S005019N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Geboes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arman, M.O., Geboes, B., Van Hecke, K. et al. Electrochemical oxidation of terbium(III) in aqueous media: influence of supporting electrolyte on oxidation potential and stability. J Appl Electrochem 52, 583–593 (2022). https://doi.org/10.1007/s10800-021-01651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01651-0

Keywords

Navigation