Skip to main content
Log in

On the corrosion behavior and microstructural characterization of Al2024 and Al2024/Ti2SC MAX phase surface composite through friction stir processings

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, aluminum composites reinforced by the Ti2SC MAX phase were fabricated through friction stir processing (FSP). The effects of FSP and the addition of Ti2SC MAX phase on the electrochemical behavior of the surface composite were studied in a 3.5 wt. % NaCl solution. Optical microscopy (OM) and scanning electron microscopy, along with energy-dispersive spectroscopy (SEM–EDS), were employed to investigate the microstructure of the samples. The corrosion behavior of the base metal and FSPed samples with and without Ti2SC-reinforcement particles was examined by different electrochemical methods such as cyclic voltammetry (CV), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Microstructural studies revealed that FSP leads to fine grain structure and reduction in Al2CuMg strengthening precipitates content. The corrosion behavior of Al2024 depends on microstructural characteristics such as grain size, Ti2SC-reinforcement particle size, and distribution of Al2CuMg precipitates. The dissolution of second phase particles (Al2CuMg) present in Al2024 aluminum increases the corrosion resistance of the Al2024 alloy. Also, adding the Ti2SC MAX phase improved the corrosion resistance of the surface composites.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Polmear I, St John D, Nie J-F, Qian M (2017) Light alloys: metallurgy of the light metals, 5th edn. Elsevier Inc., Amsterdam

    Google Scholar 

  2. Melchers RE (2015) Time dependent development of aluminium pitting corrosion. Adv Mater Sci Eng 2015:1–10. https://doi.org/10.1155/2015/215712

    Article  Google Scholar 

  3. Revie RW (2011) Uhlig’s corrosion handbook, 3rd edn. Wiley, New Jersey

    Book  Google Scholar 

  4. Koli DK, Agnihotri G, Purohit R (2014) A review on properties, behaviour and processing methods for Al-Nano Al2O3 composites. Procedia Mater Sci 6:567–589. https://doi.org/10.1016/j.mspro.2014.07.072

    Article  CAS  Google Scholar 

  5. Kumar S, Reddy SK, Joshi SV (2017) Microstructure and performance of cold sprayed Al-SiC composite coatings with high fraction of particulates. Surf Coatings Technol 318:62–71. https://doi.org/10.1016/j.surfcoat.2016.11.047

    Article  CAS  Google Scholar 

  6. Ramgopal T, Gouma PI, Frankel GS (2002) Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150. Corrosion 58:687–697. https://doi.org/10.5006/1.3287699

    Article  CAS  Google Scholar 

  7. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A Phys Metall Mater Sci 39(3):642–658. https://doi.org/10.1007/s11661-007-9459-0

    Article  CAS  Google Scholar 

  8. Chanakyan C, Sivasankar S, Meignanamoorthy M et al (2020) Friction stir processing (FSP) of numerical study based on design of experiment-review. Mater Today Proc 27:748–751. https://doi.org/10.1016/j.matpr.2019.12.035

    Article  Google Scholar 

  9. Paidar M, Ojo OO, Ezatpour HR, Heidarzadeh A (2019) Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB). Surf Coatings Technol 361:159–169. https://doi.org/10.1016/j.surfcoat.2019.01.043

    Article  CAS  Google Scholar 

  10. Moustafa E (2017) Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites. Materials (Basel) 10:1053. https://doi.org/10.3390/ma10091053

    Article  CAS  Google Scholar 

  11. Sharma R, Singh AK, Arora A et al (2019) Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution. Trans Nonferrous Met Soc China 29:1383–1392. https://doi.org/10.1016/S1003-6326(19)65045-4

    Article  CAS  Google Scholar 

  12. Soleymani S, Abdollah-zadeh A, Alidokht SA (2012) Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing. Wear 278–279:41–47. https://doi.org/10.1016/j.wear.2012.01.009

    Article  CAS  Google Scholar 

  13. Surekha K, Murty BS, Rao KP (2008) Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surf Coatings Technol 202:4057–4068. https://doi.org/10.1016/j.surfcoat.2008.02.001

    Article  CAS  Google Scholar 

  14. Rao AG, Katkar VA, Gunasekaran G et al (2014) Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al-30Si alloy. Corros Sci 83:198–208. https://doi.org/10.1016/j.corsci.2014.02.013

    Article  CAS  Google Scholar 

  15. Salehi M, Saadatmand M, Aghazadeh Mohandesi J (2012) Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans Nonferrous Met Soc China 22:1055–1063. https://doi.org/10.1016/S1003-6326(11)61283-1

    Article  CAS  Google Scholar 

  16. Mazaheri Y, Heidarpour A, Jalilvand MM, Roknian M (2019) Effect of friction stir processing on the microhardness, wear and corrosion behavior of Al6061 and Al6061/SiO2 nanocomposites. J Mater Eng Perform 28:4826–4837. https://doi.org/10.1007/s11665-019-04260-3

    Article  CAS  Google Scholar 

  17. Sun ZM (2011) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56:143–166. https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  18. Manochehrian A, Heidarpour A, Mazaheri Y, Ghasemi S (2019) On the surface reinforcing of A356 aluminum alloy by nanolayered Ti3AlC2 MAX phase via friction stir processing. Surf Coatings Technol 377:124884. https://doi.org/10.1016/j.surfcoat.2019.08.013

    Article  CAS  Google Scholar 

  19. Hosseini SM, Heidarpour A, Ghasemi S (2020) Effects of ball milling sequences on the in-situ reactive synthesis of the Ti2SC MAX phase. Adv Appl Ceram 119:204–211. https://doi.org/10.1080/17436753.2020.1732637

    Article  CAS  Google Scholar 

  20. Hodder KJ, Izadi H, McDonald AG, Gerlich AP (2012) Fabrication of aluminum-alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Mater Sci Eng A 556:114–121. https://doi.org/10.1016/j.msea.2012.06.066

    Article  CAS  Google Scholar 

  21. Ghanbari D, Kasiri Asgarani M, Amini K, Gharavi F (2017) Influence of heat treatment on mechanical properties and microstructure of the Al2024/SiC composite produced by multi–pass friction stir processing. Meas J Int Meas Confed 104:151–158. https://doi.org/10.1016/j.measurement.2017.03.024

    Article  Google Scholar 

  22. Abdi behnagh R, Besharati Givi MK, Akbari M (2012) Mechanical properties, corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates. Mater Manuf Process 27:636–640. https://doi.org/10.1080/10426914.2011.593243

    Article  CAS  Google Scholar 

  23. Surekha K, Murty BS, Prasad Rao K (2011) Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy. Mater Des 32:4502–4508. https://doi.org/10.1016/j.matdes.2011.03.033

    Article  CAS  Google Scholar 

  24. Karimi S, Ghahreman A, Rashchi F (2018) Kinetics of Fe(III)-Fe(II) redox half-reactions on sphalerite surface. Electrochim Acta 281:624–637. https://doi.org/10.1016/j.electacta.2018.05.132

    Article  CAS  Google Scholar 

  25. Wei YK, Luo XT, Ge Y et al (2019) Deposition of fully dense Al-based coatings via in-situ micro-forging assisted cold spray for excellent corrosion protection of AZ31B magnesium alloy. J Alloys Compd 806:1116–1126. https://doi.org/10.1016/j.jallcom.2019.07.279

    Article  CAS  Google Scholar 

  26. Rahsepar M, Jarahimoghadam H (2016) The influence of multipass friction stir processing on the corrosion behavior and mechanical properties of zircon-reinforced Al metal matrix composites. Mater Sci Eng A 671:214–220. https://doi.org/10.1016/j.msea.2016.05.056

    Article  CAS  Google Scholar 

  27. Khatami R, Fattah-alhosseini A, Keshavarz MK (2017) Effect of grain refinement on the passive and electrochemical behavior of 2024 Al alloy. J Alloys Compd 708:316–322. https://doi.org/10.1016/j.jallcom.2017.03.031

    Article  CAS  Google Scholar 

  28. Li JF, Ziqiao Z, Na J, Chengyu T (2005) Localized corrosion mechanism of 2×××-series Al alloy containing S(Al2CuMg) and θ′(Al2Cu) precipitates in 4.0% NaCl solution at pH 6.1. Mater Chem Phys 91:325–329. https://doi.org/10.1016/j.matchemphys.2004.11.034

    Article  CAS  Google Scholar 

  29. Guillaumin V, Mankowski G (1998) Localized corrosion of 2024 T351 aluminium alloy in chloride media. Corros Sci 41:421–438. https://doi.org/10.1016/S0010-938X(98)00116-4

    Article  Google Scholar 

  30. Mahmoud TS (2008) Effect of friction stir processing on electrical conductivity and corrosion resistance of AA6063-T6 Al alloy. Proc Inst Mech Eng Part C J Mech Eng Sci 222:1117–1123. https://doi.org/10.1243/09544062JMES847

    Article  CAS  Google Scholar 

  31. Flores JF, Neville A, Kapur N, Gnanavelu A (2012) Corrosion and erosion-corrosion processes of metal-matrix composites in slurry conditions. J Mater Eng Perform 21:395–405. https://doi.org/10.1007/s11665-011-9926-z

    Article  CAS  Google Scholar 

  32. Ni DR, Xiao BL, Ma ZY et al (2010) Corrosion properties of friction-stir processed cast NiAl bronze. Corros Sci 52:1610–1617. https://doi.org/10.1016/j.corsci.2010.02.026

    Article  CAS  Google Scholar 

  33. Narimani M, Lotfi B, Sadeghian Z (2015) Investigating the effect of tool dimension and rotational speed on microstructure of Al-B4C surface composite layer produced by friction stir processing (FSP). J Adv Mater Process 3:61–70

    Google Scholar 

  34. Jalilvand MM, Mazaheri Y, Heidarpour A, Roknian M (2019) Development of A356/Al2O3+SiO2 surface hybrid nanocomposite by friction stir processing. Surf Coatings Technol 360:121–132. https://doi.org/10.1016/j.surfcoat.2018.12.126

    Article  CAS  Google Scholar 

  35. Navaser M, Atapour M (2017) Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J Mater Sci Technol 33:155–165. https://doi.org/10.1016/j.jmst.2016.07.008

    Article  CAS  Google Scholar 

  36. Surekha K, Murty BS, Prasad Rao K (2009) Effect of processing parameters on the corrosion behaviour of friction stir processed AA2219 aluminum alloy. Solid State Sci 11:907–917. https://doi.org/10.1016/j.solidstatesciences.2008.11.007

    Article  CAS  Google Scholar 

  37. Buchheit RG, Grant RP, Hlava PF et al (1997) Local dissolution phenomena associated with s phase (Al2CuMg) particles in aluminum alloy 2024–T3. J Electrochem Soc 144:2621–2628. https://doi.org/10.1149/1.1837874

    Article  CAS  Google Scholar 

  38. Liu Z, Chong PH, Skeldon P et al (2006) Fundamental understanding of the corrosion performance of laser-melted metallic alloys. Surf Coatings Technol 200:5514–5525. https://doi.org/10.1016/j.surfcoat.2005.07.108

    Article  CAS  Google Scholar 

  39. Esmailzadeh S, Aliofkhazraei M, Sarlak H (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Prot Met Phys Chem Surfaces 54:976–989. https://doi.org/10.1134/S207020511805026X

    Article  CAS  Google Scholar 

  40. Argade GR, Panigrahi SK, Mishra RS (2012) Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros Sci 58:145–151. https://doi.org/10.1016/j.corsci.2012.01.021

    Article  CAS  Google Scholar 

  41. Domínguez-Crespo MA, Torres-Huerta AM, Rodil SE et al (2010) XPS and EIS studies of sputtered Al-Ce films formed on AA6061 aluminum alloy in 3.5% NaCl solution. J Appl Electrochem 40:639–651. https://doi.org/10.1007/s10800-009-0039-4

    Article  CAS  Google Scholar 

  42. Zhang Z, Liu F, Han EH, Xu L (2020) Mechanical and corrosion properties in 3.5% NaCl solution of cold sprayed Al-based coatings. Surf Coatings Technol 385:135539. https://doi.org/10.1016/j.surfcoat.2020.125372

    Article  CAS  Google Scholar 

  43. Dong CF, Sheng H, An YH et al (2010) Corrosion of 7A04 aluminum alloy under defected epoxy coating studied by localized electrochemical impedance spectroscopy. Prog Org Coatings 67:269–273. https://doi.org/10.1016/j.porgcoat.2009.11.004

    Article  CAS  Google Scholar 

  44. Burstein SH (2020) The chemistry, biology and pharmacology of the cyclopentenone prostaglandins. Prostaglandins Other Lipid Mediat 148:106408. https://doi.org/10.1016/j.prostaglandins.2020.106408

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Zhao K, Yu M, Li S (2018) Effect of surface abrasion on pitting corrosion of Al-Li alloy. Corros Sci 138:75–84. https://doi.org/10.1016/j.corsci.2018.04.010

    Article  CAS  Google Scholar 

  46. Cao M, Liu L, Yu Z et al (2019) Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment. J Mater Sci Technol 35:651–659. https://doi.org/10.1016/j.jmst.2018.09.060

    Article  Google Scholar 

  47. Zhang W, Frankel GS (2003) Transitions between pitting and intergranular corrosion in AA2024. Electrochim Acta 48:1193–1210. https://doi.org/10.1016/S0013-4686(02)00828-9

    Article  CAS  Google Scholar 

  48. Liu Y, Meng GZ, Cheng YF (2009) Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions. Electrochim Acta 54:4155–4163. https://doi.org/10.1016/j.electacta.2009.02.058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarpour, A., Mousavi, Z.S., Karimi, S. et al. On the corrosion behavior and microstructural characterization of Al2024 and Al2024/Ti2SC MAX phase surface composite through friction stir processings. J Appl Electrochem 51, 1123–1136 (2021). https://doi.org/10.1007/s10800-021-01567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01567-9

Keywords

Navigation