Skip to main content

Advertisement

Log in

Performance comparison between batch and continuous mode of operation of microbial electrosynthesis for the production of organic chemicals

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Microbial electrosynthesis (MES) is an innovative technology, which can yield valuable organic chemicals with concomitant CO2 sequestration by employing microbes as biocatalysts. The mode of operation has an imperative role in the performance of MES, thus, affecting the yield of synthesized organic chemicals from the MES. However, to the best of our knowledge, the optimal mode of operation for MES has not been determined till date. Hence, in the present investigation, two MES were operated: one in batch mode (MES-B) and another in continuous mode (MES-C), and their performance was monitored. The MES-B exhibited 31%, 33.5% and 44% higher production rate of acetate, propionate and butyrate, respectively, in comparison to MES-C. Moreover, the performance of MES-B also stabilized faster, and microbiome in the cathodic chamber of MES-B was able to accept 26% more electrons supplied to it externally, which were employed as reducing equivalents to reduce CO2. The enactment of MES-B was superior to that of MES-C due to the higher retention of CO2 and hydrogen in cathodic chamber of MES-B. Therefore, operating MES in batch mode would aid in yielding more organic chemicals through CO2 sequestration.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1 (2):e00103-00110-e00103-00110. https://doi.org/https://doi.org/10.1128/mBio.00103-10

  2. Das S, Das I, Ghangrekar M (2020) Role of applied potential on microbial electrosynthesis of organic compounds through carbon dioxide sequestration. J Environ Chem Eng 8(4):104028. https://doi.org/10.1016/j.jece.2020.104028

    Article  CAS  Google Scholar 

  3. Fukushima T, Yamauchi M (2020) Electrosynthesis of glycine from bio-derivable oxalic acid. J Appl Electrochem. https://doi.org/10.1007/s10800-020-01428-x

    Article  Google Scholar 

  4. Raychaudhuri A, Behera M (2020) Comparative evaluation of methanogenesis suppression methods in microbial fuel cell during rice mill wastewater treatment. Environ Technol Innov 17:100509. https://doi.org/10.1016/j.eti.2019.100509

    Article  Google Scholar 

  5. Das S, Mishra A, Ghangrekar M (2020) Production of hydrogen peroxide using various metal-based catalysts in electrochemical and bioelectrochemical systems: mini review. J Hazard Toxic Radioact Waste 24(3):06020001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000498

    Article  Google Scholar 

  6. Türk K, Kruusenberg I, Kibena-Põldsepp E, Bhowmick G, Kook M, Tammeveski K, Matisen L, Merisalu M, Sammelselg V, Ghangrekar M (2018) Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. Int J Hydrogen Energy 43(51):23027–23035. https://doi.org/10.1016/j.ijhydene.2018.10.143

    Article  CAS  Google Scholar 

  7. Sharma V, Kundu P (2010) Biocatalysts in microbial fuel cells. Enzyme Microb Technol 47(5):179–188. https://doi.org/10.1016/j.enzmictec.2010.07.001

    Article  CAS  Google Scholar 

  8. Feng Q, Song Y-C (2016) Decoration of graphite fiber fabric cathode with electron transfer assisting material for enhanced bioelectrochemical methane production. J Appl Electrochem 46(12):1211–1219. https://doi.org/10.1007/s10800-016-1003-8

    Article  CAS  Google Scholar 

  9. Cercado B, Cházaro-Ruiz LF, Trejo-Córdova G, Buitrón G, Razo-Flores E (2016) Characterization of oxidized carbon foil as a low-cost alternative to carbon felt-based electrodes in bioelectrochemical systems. J Appl Electrochem 46(2):217–227. https://doi.org/10.1007/s10800-015-0906-0

    Article  CAS  Google Scholar 

  10. Das S, Das S, Das I, Ghangrekar M (2019) Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: a review. Mater Sci Energy Technol 2(3):687–696. https://doi.org/10.1016/j.mset.2019.08.003

    Article  Google Scholar 

  11. Das S, Diels L, Pant D, Patil AS, Ghangrekar M (2020) Microbial electrosynthesis: A way towards the production of electro-commodities through carbon sequestration with microbes as biocatalysts. J Electrochem Soc. https://doi.org/10.1149/1945-7111/abb836

    Article  Google Scholar 

  12. Srikanth S, Maesen M, Dominguez-Benetton X, Vanbroekhoven K, Pant D (2014) Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour Technol 165:350–354. https://doi.org/10.1016/j.biortech.2014.01.129

    Article  CAS  PubMed  Google Scholar 

  13. Roy S, Schievano A, Pant D (2016) Electro-stimulated microbial factory for value added product synthesis. Bioresour Technol 213:129–139. https://doi.org/10.1016/j.biortech.2016.03.052

    Article  CAS  PubMed  Google Scholar 

  14. Das I, Das S, Ghangrekar M (2020) Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem Phys Lett 751:137536. https://doi.org/10.1016/j.cplett.2020.137536

    Article  CAS  Google Scholar 

  15. Jourdin L, Freguia S, Flexer V, Keller J (2016) Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 50(4):1982–1989. https://doi.org/10.1021/acs.est.5b04431

    Article  CAS  PubMed  Google Scholar 

  16. Das S, Chakraborty I, Das S, Ghangrekar M (2020) Application of novel modular reactor for microbial electrosynthesis employing imposed potential with concomitant separation of acetic acid. Sustain Energy Technol Assess 43:100902. https://doi.org/10.1016/j.seta.2020.100902

    Article  Google Scholar 

  17. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958. https://doi.org/10.1021/es803531g

    Article  CAS  PubMed  Google Scholar 

  18. Aryal N, Halder A, Tremblay P-L, Chi Q, Zhang T (2016) Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim Acta 217:117–122. https://doi.org/10.1016/j.electacta.2016.09.063

    Article  CAS  Google Scholar 

  19. Das S, Das S, Ghangrekar M (2020) Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration. Process Biochem 101:237–246. https://doi.org/10.1016/j.procbio.2020.11.017

    Article  CAS  Google Scholar 

  20. Aryal N, Ammam F, Patil SA, Pant D (2017) An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem 19(24):5748–5760. https://doi.org/10.1039/C7GC01801K

    Article  CAS  Google Scholar 

  21. Gildemyn S, Verbeeck K, Jansen R, Rabaey K (2017) The type of ion selective membrane determines stability and production levels of microbial electrosynthesis. Bioresour Technol 224:358–364. https://doi.org/10.1016/j.biortech.2016.11.088

    Article  CAS  PubMed  Google Scholar 

  22. Bian B, Alqahtani MF, Katuri KP, Liu D, Bajracharya S, Lai Z, Rabaey K, Saikaly PE (2018) Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. J Mater Chem A 6(35):17201–17211. https://doi.org/10.1039/C8TA05322G

    Article  CAS  Google Scholar 

  23. Modestra JA, Mohan SV (2017) Microbial electrosynthesis of carboxylic acids through CO2 reduction with selectively enriched biocatalyst: microbial dynamics. J CO Util 20:190–199. https://doi.org/10.1016/j.jcou.2017.05.011

    Article  CAS  Google Scholar 

  24. Bajracharya S, Vanbroekhoven K, Buisman C, Strik D, Deepak P (2017) Bioelectrochemical conversion of CO2 to chemicals: CO2 as next generation feedstock for the electricity-driven bioproduction in batch and continuous mode. Faraday Discuss 202:433–449

    Article  CAS  Google Scholar 

  25. Bajracharya S, Yuliasni R, Vanbroekhoven K, Buisman CJ, Strik DP, Pant D (2017) Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113:26–34. https://doi.org/10.1016/j.bioelechem.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  26. Das S, Ghangrekar M (2019) Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell. Environ Technol. https://doi.org/10.1080/09593330.2019.1575477

    Article  PubMed  Google Scholar 

  27. Groher A, Weuster-Botz D (2016) General medium for the autotrophic cultivation of acetogens. Bioprocess Biosyst Eng 39(10):1645–1650. https://doi.org/10.1007/s00449-016-1634-5

    Article  CAS  PubMed  Google Scholar 

  28. Das S, Chatterjee P, Ghangrekar M (2018) Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis. Water Sci Technol 77(5):1293–1302. https://doi.org/10.2166/wst.2018.002

    Article  CAS  PubMed  Google Scholar 

  29. Das I, Das S, Dixit R, Ghangrekar M (2020) Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell. Ionics. https://doi.org/10.1007/s11581-020-03472-1

    Article  Google Scholar 

  30. Das S, Ghangrekar M (2018) Value added product recovery and carbon dioxide sequestration from biogas using microbial electrosynthesis. Indian J Exp Biol 56:470–478

    CAS  Google Scholar 

  31. Bajracharya S, ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJ, Strik DP, Pant D (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195:14–24. https://doi.org/10.1016/j.biortech.2015.05.081

    Article  CAS  PubMed  Google Scholar 

  32. Blanchet E, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015) Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy Environ Sci 8(12):3731–3744. https://doi.org/10.1039/C5EE03088A

    Article  CAS  Google Scholar 

  33. Jourdin L, Lu Y, Flexer V, Keller J, Freguia S (2016) Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3(4):581–591. https://doi.org/10.1002/celc.201500530

    Article  CAS  Google Scholar 

  34. Aryal N, Tremblay P-L, Lizak DM, Zhang T (2017) Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide. Bioresour Technol 233:184–190. https://doi.org/10.1016/j.biortech.2017.02.128

    Article  CAS  PubMed  Google Scholar 

  35. Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Balaguer MD, Colprim J (2016) Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. J Chem Technol Biotechnol 91(4):921–927. https://doi.org/10.1002/jctb.4657

    Article  CAS  Google Scholar 

  36. Su M, Jiang Y, Li D (2013) Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture. J Microbiol Biotechnol 23(8):1140–1146. https://doi.org/10.4014/jmb.1304.04039

    Article  CAS  PubMed  Google Scholar 

  37. Aryal N, Halder A, Zhang M, Whelan PR, Tremblay P-L, Chi Q, Zhang T (2017) Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion. Sci Rep 7(1):1–8. https://doi.org/10.1038/s41598-017-09841-7

    Article  CAS  Google Scholar 

  38. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    Article  CAS  Google Scholar 

  39. Christodoulou X, Velasquez-Orta SB (2016) Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO. Environ Sci Technol 50(20):11234–11242. https://doi.org/10.1021/acs.est.6b02101

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by The Ministry of Human Resource Development, Government of India (SAP17_IITKGP_05).

Author information

Authors and Affiliations

Authors

Contributions

SD: conceptualization; data curation; formal analysis; investigation; methodology; software; validation; visualization; roles/writing—original draft; writing—review and editing. MMG: funding acquisition; project administration; resources; supervision; validation; writing—review and editing.

Corresponding author

Correspondence to M. M. Ghangrekar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Ghangrekar, M.M. Performance comparison between batch and continuous mode of operation of microbial electrosynthesis for the production of organic chemicals. J Appl Electrochem 51, 715–725 (2021). https://doi.org/10.1007/s10800-020-01524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01524-y

Keywords

Navigation