Skip to main content
Log in

Accelerated tests, a necessary complement of electrochemical assays to evaluate anti-corrosive coatings

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion processes of painted metals may be monitored by accelerated and/or electrochemical assays. There is certain relationship between both types of test. Particularly, when using paint coatings with high barrier effect (R > 108 Ω cm2) and low dielectric capacity (C < 10−9 F cm−2), a good anti-corrosion performance was accomplished and results from both types of tests match. Once corrosion has started, a charge transfer resistance value > 106 Ω cm2 ensures kinetic inhibition of the corrosion process. The question arises when the values of the above-mentioned parameters differ from those and a realistic approach to the coating useful service life is needed. In this paper, it was demonstrated that, in such cases, accelerated and electrochemical assays complement each other. Accelerated tests are related to coating durability while electrochemical ones provide information about the degradation mechanism. To carry out this investigation, three anti-corrosive paints containing ecological pigments were prepared and their protective behavior evaluated in the salt spray chamber and by electrochemical impedance spectroscopy (EIS).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sheridan H (2017) Paint toxicity and risks. http://www.buildingconservation.com/articles/lead-paint/lead-paint.htm

  2. Wilbur S, Abadin H, Fay M, Yu D, Tencza MS (2000) Toxicologycal profile for chromium. Agency for Toxic Substances and Disease Registry Toxicological profile, Atlanta, pp 1–427

    Google Scholar 

  3. Ahmed NM, Mohamed MG, Abd El-Gawad WM (2018) Corrosion protection performance of silica fume waste-phosphates core-shell pigments. Pigm Resin Technol 47(3):261–271

    Article  CAS  Google Scholar 

  4. Hao Y, Liu F, Han E-H, Anjum S, Xu G (2013) The mechanism of inhibition by zinc phosphate in an epoxy coating. Corros Sci 69:77–86

    Article  CAS  Google Scholar 

  5. Shao Y, Jia C, Meng G, Zhang T, Wang F (2009) The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros Sci 51(2):371–379

    Article  CAS  Google Scholar 

  6. Gerhard A, Bittner A (1986) Second generation phosphate anticorrosive pigments Formulating rules for full replacement of new anticorrosive pigments. J Coat Technol 58(740):59–65

    Google Scholar 

  7. Jašková V, Kalendová A (2012) Anticorrosive coatings containing modified phosphates. Prog Org Coat 75:328–334

    Article  Google Scholar 

  8. Liu Y, Zhou X, Lyon SB, Emad R, Hashimoto T, Gholinia A, Thompson GE, Graham D, Gibbon SR, Francis D (2017) An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steel. Prog Org Coat 102:29–36

    Article  CAS  Google Scholar 

  9. Naderi R, Attar MM (2009) Electrochemical study of protective behavior of organic coating pigmented with zinc aluminum polyphosphate as a modified zinc phosphate at different pigment volume concentrations. Prog Org Coat 66:314–320

    Article  CAS  Google Scholar 

  10. Naderi R, Attar MM (2009) The inhibitive performance of polyphosphate-based anticorrosion pigments using electrochemical techniques. Dyes Pigm 80:349–354

    Article  CAS  Google Scholar 

  11. Khan MN, Mohammad F (2014) Eutrophication: causes, consequences and control, vol 2, 1st edn. Springer, London

    Google Scholar 

  12. Bohm S, McMurray HN, Powell SM, Worsley DA (2001) Novel environment friendly corrosion inhibitor pigments based on naturally occurring clay minerals. Mater Corros 52:896–903

    Article  CAS  Google Scholar 

  13. Williams G, McMurray HN, Loveridge MJ (2010) Inhibition of corrosion-driven organic coating disbondment on galvanized steel by smart release group II and Zn(II)-exchanged bentonite pigment. Electrochim Acta 55:1740–1748

    Article  CAS  Google Scholar 

  14. Kalendová A (1998) Anticorrosive spinel-type pigments of the second generation. Pigm Resin Technol 27(4):225–230

    Article  Google Scholar 

  15. Grigoriev D (2015) Anticorrosion coatings with self recovering ability based on damaged triggered micro and nanocontainers. In: Tiwari A, Hihara L, Rawlins J (eds) Intelligent coatings for corrosion control butterworth-heinemann. Elsevier, Oxford, pp 283–333. https://doi.org/10.1016/b978-0-12-411467-8.00008-8

    Chapter  Google Scholar 

  16. Appleman BR (1990) Survey of accelerated test methods for anti-corrosive coating performance. J Coat Technol Res 62(787):57–67

    CAS  Google Scholar 

  17. Meade CL (2005) Cabinet Tests. In: Baboian R (ed) Corrosion tests and standards, application and interpretation. ASTM International, West Conshohocken, pp 131–138

    Google Scholar 

  18. Dean SWJ (2005) Atmospheric. In: Baboian R (ed) Corrosion tests and standards—application and interpretation. ASTM International, West Conshohocken, pp 159–169

    Google Scholar 

  19. Walter GW (1986) A critical review of d.c. electrochemical tests for painted metals. Corros Sci 26(1):39–47

    Article  CAS  Google Scholar 

  20. Walter GW (1986) A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros Sci 26:681–703

    Article  CAS  Google Scholar 

  21. Leidheiser H (1979) Electrical and electrochemical measurements as predictors of corrosion at the metal-organic coatings interface. Prog Org Coat 7:79–104

    Article  CAS  Google Scholar 

  22. Santágata DM, Seré PR, Elsner CI, Di Sarli AR (1998) Evaluation of the surface treatment effect on the corrosión performance of paint coated carbón steel. Prog Org Coat 33:44–54

    Article  Google Scholar 

  23. Seré PR, Santágata DM, Di Sarli AR, Elsner CI (1996) Study of commercially available epoxy protective coatings by using non-destructive electrochemical techniques. Corros Rev 14(1–2):87–97

    Google Scholar 

  24. Szauer T (1982) Electrical and electrochemical resistance for protective non metallic coatings. Prog Org Coat 10:157–170

    Article  CAS  Google Scholar 

  25. Ming DW, Dixon JB (1987) Quantitative determination of clinoptilolite in soils by cation-exchange capacity method. Clays Clay Miner 35:463–468

    Article  CAS  Google Scholar 

  26. Wolynec S (2003) Técnicas eletroquímicas en corroção. San Pablo

  27. Nubiola (2018). http://www.nubiola.com/upfiles/files/newsnubiolai19.pdf

  28. Alkipol 434/50 resin (2017). http://www.polidur.com.ar/info/ht/alquidicas/434-50%20A.pdf

  29. Boukamp BA (1989) Equivalent circuit. University of Twente, Enschede

    Google Scholar 

  30. Datka J, Góra-Marek K (2004) Ir spectra of zeolites recorded at liquid helium temperature. Stud Surf Sci Catal Part B 154:1369–1374

    Article  Google Scholar 

  31. Nabiollah M, Navid R, Homayon P, Farideh A, Karimi Shahraki B (2013) Porosity, characterization and structural properties of natural zeolite -Clinoptilolite- as a sorbent. Environ Prot Eng 39(1):139–152. https://doi.org/10.5277/EPE130111

    Article  CAS  Google Scholar 

  32. Mahdavian M, Attar MM (2005) Evaluation of zinc phosphate and zinc chromate effectiveness via AC and DC methods. Prog Org Coat 53(3):191–194. https://doi.org/10.1016/j.porgcoat.2005.02.007

    Article  CAS  Google Scholar 

  33. Blustein G, del Amo B, Romagnoli R (2000) Pore blocking by corrosion products. Eur Coat J 11:74–82

    Google Scholar 

  34. Amirudin A, Thierry D (1995) Application of Electrochemical impedance spectroscopy to study efficiency of anticorrosion pigments in epoxy-polyamide resin. Br Corros J 30:128–134

    Article  CAS  Google Scholar 

  35. Ferraz O, Cavalcanti E, Di Sarli AR (1995) The characterization of protective properties for some naval steel/polymeric coatings/3%NaCl solution systems by EIS and visual assessment. Corros Sci 37:1267–1280

    Article  CAS  Google Scholar 

  36. Haynes C, Baboian R (1985) Electromechanical impedance tests for protective coatings. ASTM Internationals, Philadelphia

    Google Scholar 

  37. Kendig M, Scully J (1990) Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals. Corrosion 46:22–29

    Article  CAS  Google Scholar 

  38. Mansfeld F (1981) Recording and analysis of AC impedance data for corrosion studies. Background and methods of analysis. Corrosion (NACE) 36(5):301–307

    Article  Google Scholar 

  39. Skale S, Doleček V, Slemnik M (2008) Electrochemical impedance studies of corrosion protected surfaces covered with epoxy polyamide coating system. Prog Org Coat 62:387–392

    Article  CAS  Google Scholar 

  40. Szauer T (1982) Impedance measurements for the evaluation of protective nonmetallic coatings. Prog Org Coat 10(171–183):171

    Article  CAS  Google Scholar 

  41. Simões AMP, Carbonari RO, Di Sarli AR, del Amo B, Romagnoli R (2011) An environmentally acceptable primer for galvanized steel: formulation and evaluation by SVET. Corros Sci 53:464–472

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP) and Comisión de Investigaciones Científicas of the Buenos Aires Province (CICPBA), for the economic support to do this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Deyá.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Alessandro, O., Selmi, G.J., Di Sarli, A.R. et al. Accelerated tests, a necessary complement of electrochemical assays to evaluate anti-corrosive coatings. J Appl Electrochem 49, 811–822 (2019). https://doi.org/10.1007/s10800-019-01324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01324-z

Keywords

Navigation