Skip to main content
Log in

Material contrast studies of conductive thin films on semiconductor substrates using scanning electrochemical microscopy

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a mediator-free scanning electrochemical microscopy (SECM) imaging concept is presented, which is capable of generating high electrochemical contrast and high spatial resolution between two conductive materials. The methodical approach is based on the hydrogen evolution reaction which shows potential dependent material selectivity. Various conductive thin films deposited on silicon substrates were studied. The investigated materials included copper, ruthenium, platinum, tantalum nitride, and titanium nitride. The hydrogen evolution was studied with chronoamperometry (Esubstrate = 1 V vs. Ag/AgCl/3 M KCl) to characterize the material selectivity of this reaction for the above-listed thin films. SECM imaging in the substrate generation-tip collection (SG/TC) mode was carried out and applied to study the boundary regions of thin copper films in combination with the aforementioned thin film materials. In addition, the spatial resolution of hydrogen based SG/TC SECM imaging was characterized using lithographically fabricated platinum/copper structures as test substrates. For comparison, the common feedback mode was also applied for SECM imaging of the conducting thin film combinations. It was found, that only the hydrogen based SG/TC mode enabled SECM imaging with clear material contrast between different conductive materials which was not possible in the feedback mode.

Graphical abstract

Schematic illustration of imaging procedure with mediator-free SECM concept with hydrogen as active species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baklanov M, Ho PS, Zschech E (2012) Advanced interconnects for ULSI technology. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  2. Lane MW, Murray CE, McFeely FR, Vereecken PM, Rosenberg R (2003) Liner materials for direct electrodeposition of Cu. Appl Phys Lett 83:2330–2332. https://doi.org/10.1063/1.1610256

    Article  CAS  Google Scholar 

  3. Armini S, El-Mekki Z, Nagar M, Radisic A, Vereecken PM (2014) Wafer scale copper direct plating on thin PVD RuTa layers: a route to enable filling 30 nm features and below? J Electrochem Soc 161:D564–D570. https://doi.org/10.1149/2.1031410jes

    Article  CAS  Google Scholar 

  4. Moffat TP, Walker M, Chen PJ, Bonevich JE, Egelhoff WF, Richter L, Witt C, Aaltonen T, Ritala M, Leskelä M, Josell D (2006) Electrodeposition of Cu on Ru barrier layers for damascene processing. J Electrochem Soc 153:C37. https://doi.org/10.1149/1.2131826

    Article  CAS  Google Scholar 

  5. Emekli U, West AC (2009) Effect of additives and pulse plating on copper nucleation onto Ru. Electrochim Acta 54:1177–1183. https://doi.org/10.1016/j.electacta.2008.08.065

    Article  CAS  Google Scholar 

  6. Vereecken PM, Radisic A, Ross FM, Time TEM, Studies (2019) Differential inhibition during Cu electrodeposition on Ru: combined electrochemical and real-time TEM studies. J Electrochem Soc 166:D3129–D3135. https://doi.org/10.1149/2.0121901jes

    Article  CAS  Google Scholar 

  7. Kim S, Duquette DJ (2006) Growth of conformal copper films on TaN by electrochemical deposition for ULSI interconnects. Surf Coat Technol 201:2712–2716. https://doi.org/10.1016/j.surfcoat.2006.05.022

    Article  CAS  Google Scholar 

  8. Radisic A, Cao Y, Taephaisitphongse P, West AC, Searson PC (2003) Direct copper electrodeposition on TaN barrier layers. J Electrochem Soc 150:C362–C367. https://doi.org/10.1149/1.1565137

    Article  CAS  Google Scholar 

  9. Kim S, Duquette DJ (2006) Nucleation characteristics of directly electrodeposited copper on TiN. J Electrochem Soc 153:C673. https://doi.org/10.1149/1.2219712

    Article  CAS  Google Scholar 

  10. Oskam G, Vereecken PM, Searson PC (1999) Electrochemical deposition of copper on n-Si/TiN. J Electrochem Soc 146:1436–1441. https://doi.org/10.1149/1.1391782

    Article  CAS  Google Scholar 

  11. Graham L, Steinbrüchel C, Duquette DJ (2002) Nucleation and growth of electrochemically deposited copper on TiN and copper from a Cu NH3 bath. J Electrochem Soc 149:C390–C395. https://doi.org/10.1149/1.1487836

    Article  CAS  Google Scholar 

  12. Shaw MJ, Grunow S, Duquette DJ (2001) “Seedless” electrochemical deposition of copper on physical vapor deposition-W2N liner materials for ultra large scale integration (ULSI) devices. J Electron Mater 30:1602–1608. https://doi.org/10.1007/s11664-001-0179-8

    Article  CAS  Google Scholar 

  13. Josell D, Witt C, Moffat TP (2006) Osmium barriers for direct copper electrodeposition in damascene processing. Electrochem Solid-State Lett 9:C41–C43. https://doi.org/10.1149/1.2149214

    Article  CAS  Google Scholar 

  14. Josell D, Bonevich JE, Moffat TP, Aaltonen T, Ritala M, Leskelä M (2006) Iridium barriers for direct copper electrodeposition in damascene processing. Electrochem Solid-State Lett 9:C48–C50. https://doi.org/10.1149/1.2179770

    Article  CAS  Google Scholar 

  15. Pesic B (2007) Copper electrodeposition on diffusion barrier films—a literature review. ECS Trans 2:243–256. https://doi.org/10.1149/1.2408879

    Article  Google Scholar 

  16. Izquierdo J, Santana JJ, González S, Souto RM (2012) Scanning microelectrochemical characterization of the anti-corrosion performance of inhibitor films formed by 2-mercaptobenzimidazole on copper. Prog Org Coat 74:526–533. https://doi.org/10.1016/j.porgcoat.2012.01.019

    Article  CAS  Google Scholar 

  17. Li C, Li L, Wang C (2014) Study of the inhibitive effect of mixed self-assembled monolayers on copper with SECM. Electrochim Acta 115:531–536. https://doi.org/10.1016/j.electacta.2013.11.029

    Article  CAS  Google Scholar 

  18. Wittstock G, Asmus T, Wilhelm T (2000) Investigation of ion-bombarded conducting polymer films by scanning electrochemical microscopy (SECM). Fresenius J Anal Chem 367:346–351. https://doi.org/10.1007/s002160000389

    Article  CAS  PubMed  Google Scholar 

  19. Vielstich W, Gasteiger HA, Yokokawa H (2009) Handbook of fuel cells: fundamentals technology and applications: advances in electrocatalysis, materials, diagnostics and durability. John Wiley & Sons, Hoboken

    Google Scholar 

  20. Jantz DT, Leonard KC (2018) Characterizing electrocatalysts with scanning electrochemical microscopy. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.8b00922

    Article  Google Scholar 

  21. Kim J, Renault C, Nioradze N, Arroyo N, Leonard KC, Bard AJ (2016) Nanometer scale scanning electrochemical microscopy instrumentation. Anal Chem. https://doi.org/10.1021/acs.analchem.6b03024

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim J, Renault C, Nioradze N, Arroyo-Currás N, Leonard KC, Bard AJ (2016) Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy. J Am Chem Soc 138:8560–8568. https://doi.org/10.1021/jacs.6b03980

    Article  CAS  PubMed  Google Scholar 

  23. Kai T, Zoski CG, Bard AJ (2018) Scanning electrochemical microscopy at the nanometer level. Chem Commun 54:1934–1947. https://doi.org/10.1039/C7CC09777H

    Article  CAS  Google Scholar 

  24. Kucernak AR, Chowdhury PB, Wilde CP, Kelsall GH, Zhu YY, Williams DE (2000) Scanning electrochemical microscopy of a fuel-cell electrocatalyst deposited onto highly oriented pyrolytic graphite. Electrochim Acta 45:4483–4491. https://doi.org/10.1016/S0013-4686(00)00504-1

    Article  CAS  Google Scholar 

  25. Zhou J, Zu Y, Bard AJ (2000) Scanning electrochemical microscopy—part 39. The proton/hydrogen mediator system and its application to the study of the electrocatalysis of hydrogen oxidation. J Electroanal Chem 491:22–29. https://doi.org/10.1016/S0022-0728(00)00100-5

    Article  CAS  Google Scholar 

  26. Fernández JL, Zoski CG (2018) Voltammetric and scanning electrochemical microscopy investigations of the hydrogen evolution reaction in acid at nanostructured ensembles of ultramicroelectrode dimensions: theory and experiment. J Phys Chem C 122:71–82. https://doi.org/10.1021/acs.jpcc.7b08976

    Article  CAS  Google Scholar 

  27. Meier J, Friedrich KA, Stimming U (2002) Novel method for the investigation of single nanoparticle reactivity. Faraday Discuss 121:365–372. https://doi.org/10.1039/b200014h

    Article  CAS  Google Scholar 

  28. Iffelsberger C, Vatsyayan P, Matysik F-M (2017) Scanning electrochemical microscopy with forced convection introduced by high-precision stirring. Anal Chem 89:1658–1664. https://doi.org/10.1021/acs.analchem.6b03764

    Article  CAS  PubMed  Google Scholar 

  29. Lee C, Miller CJ, Bard AJ (1991) Scanning electrochemical microscopy: preparation of submicrometer electrodes. Anal Chem 63:78–83. https://doi.org/10.1021/ac00001a016

    Article  CAS  Google Scholar 

  30. Hanekamp P, Robl W, Matysik FM (2017) Development and application of a multipurpose electrodeposition cell configuration for studying plating processes on wafer specimen and for characterizing surface films by scanning electrochemical microscopy. J Appl Electrochem 47:1305–1312. https://doi.org/10.1007/s10800-017-1124-8

    Article  CAS  Google Scholar 

  31. Kim S, Duquette DJ (2006) Effect of chemical composition on adhesion of directly electrodeposited copper film on TiN. J Electrochem Soc 153:C417–C421. https://doi.org/10.1149/1.2189971

    Article  CAS  Google Scholar 

  32. Starosvetsky D, Sezin N, Ein-Eli Y (2012) Seedless copper electroplating on Ta from an alkaline activated bath. Electrochim Acta 82:367–371. https://doi.org/10.1016/j.electacta.2012.03.033

    Article  CAS  Google Scholar 

  33. Starosvetsky D, Sezin N, Ein-eli Y (2010) Electrochimica acta seedless copper electroplating on Ta from a “single” electrolytic bath. Electrochim Acta 55:1656–1663. https://doi.org/10.1016/j.electacta.2009.10.044

    Article  CAS  Google Scholar 

  34. Sheffer M, Mandler D (2008) Why is copper locally etched by scanning electrochemical microscopy? J Electroanal Chem 622:115–120. https://doi.org/10.1016/j.jelechem.2008.05.005

    Article  CAS  Google Scholar 

  35. Galceran J, Cecı J, Puy J (2000) Analytical expressions for feedback currents at the scanning electrochemical microscope. J Phys Chem B 104:7993–8000. https://doi.org/10.1021/jp001564s

    Article  CAS  Google Scholar 

  36. Shao Y, Mirkin MV (1998) Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy (SECM). J Phys Chem B 102:9915–9921. https://doi.org/10.1021/jp9828282

    Article  CAS  Google Scholar 

  37. Smith FG, King TA (2007) Optics and photonics: an introduction. John Wiley & Sons, Hoboken

    Google Scholar 

Download references

Acknowledgements

Timo Raith gratefully acknowledges the financial support from the Studienstiftung des deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Matysik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanekamp, P., Raith, T., Iffelsberger, C. et al. Material contrast studies of conductive thin films on semiconductor substrates using scanning electrochemical microscopy. J Appl Electrochem 49, 455–463 (2019). https://doi.org/10.1007/s10800-019-01294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01294-2

Keywords

Navigation