Skip to main content
Log in

Boosting the lithium-ion storage performance of dense MnCO3 microsphere anodes via Sb-substitution and construction of neural-like carbon nanotube networks

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

To boost the electrochemical performance of MnCO3 (MC) microspheres, binary SbxMn1−xCO3 (x = 1/3, 1/2 and 2/3) microspheres, labeled SMC-12, SMC-11 and SMC-21, respectively, were prepared using a solvothermal method. A 3D conductive network of carbon nanotubes (CNT) was also successfully built from the inside to the surface of the SMC-12 microspheres to promote electronic and ionic transportation. As observed, the microspheres of SMC-12 were larger and had a more uniform distribution compared with pure MC, SMC-11 and SMC-21. Profiting from the introduction of neural-like CNTs networks, the electrochemical performance and the utility of the SMC-12 microspheres (approximately 3.5–7 µm in diameter) were remarkably improved. The obtained CNTs@SMC-12 composite anode delivered 1066 and 572 mAh g−1 at current densities of 500 and 5000 mAg−1 after 200 cycles, respectively, which were much higher than the 737 and 297 mAh g−1 of bare SMC-12.

Graphical abstract

With the successful construction of a 3D “neural”-like CNTs conductive network for the Sb1/3Mn2/3CO3 (SMC-12) microsphere, the rate performance, the cyclic stability, the utility of the large size SMC-12 microspheres are remarkably promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun YM, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium based rechargeable batteries. Nat Energy 1:16071

    Article  CAS  Google Scholar 

  2. Yuan CZ, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504

    Article  CAS  Google Scholar 

  3. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443

    Article  CAS  PubMed  Google Scholar 

  4. Yang FH, Yu F, Zhang ZA, Zhang K, Lai YQ, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J 22:2333–2338

    Article  CAS  PubMed  Google Scholar 

  5. Xu ZL, Cao K, Abouali S, Garakani MA, Huang JQ, Huang JQ, Heidari EK, Wang HT, Kim JK (2016) Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. Energy Storage Mater 3:45–54

    Article  Google Scholar 

  6. Huang ZD, Zhang K, Zhang TT, Liu RQ, Lin XJ, Li Y, Feng XM, Mei QB, Masese T, Ma YW, Huang W (2016) Binder-free graphene/carbon nanotube/silicon hybrid grid as freestanding anode for high capacity lithium ion batteries. Compos Part A 84:386–392

    Article  CAS  Google Scholar 

  7. Li S, Qin XY, Zhang HR, Wu JX, He YB, Li BH, Kang FY (2014) Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries. Electrochem Commun 49:98–102

    Article  CAS  Google Scholar 

  8. Miao C, Liu M, He YB, Qin XY, Tang LK, Huang B, Li R, Li BH, Kang FY (2016) Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Mater 3:98–105

    Article  Google Scholar 

  9. Huang ZD, Zhang K, Zhang TT, Yang XS, Liu RQ, Li Y, Lin XJ, Feng XM, Ma YW, Huang W (2016) Hierarchical NiCoO2 mesoporous microspheres as anode for lithium ion batteries with superior rate capability. Energy Storage Mater 3:36–44

    Article  Google Scholar 

  10. Cui ZH, Li CL, Yu PF, Yang MH, Guo XX, Yin CL (2015) Reaction pathway and wiring network dependent Li/Na storage of micro-sized conversion anode with mesoporosity and metallic conductivity. J Mater Chem A 3:509–514

    Article  CAS  Google Scholar 

  11. Huang ZD, Zhang TT, Lu H, Masese T, Yamamoto K, Liu RQ, Lin XJ, Feng XM, Liu XM, Wang D, Uchimoto Y, Ma YW (2017) Grain-boundary-rich mesoporous NiTiO3 micro prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2017.08.012

    Article  Google Scholar 

  12. Fang W, Zhang NQ, Fan LS, Sun KN (2016) Bi2O3 nanoparticles encapsulated by three dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J Power Sources 333:30–36

    Article  CAS  Google Scholar 

  13. Hou LR, Lian L, Zhang LH, Pang G, Yuan CZ, Zhang XG (2014) Self-sacrifi ce template fabrication of hierarchical mesoporous Bi-component-active ZnO/ZnFe2O4 submicrocubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater. https://doi.org/10.1002/adfm.201402827

    Article  Google Scholar 

  14. Zhang LH, Zhu SQ, Cao H, Pang G, Lin JD, Hou LR, Yuan CZ (2015) Ultrafast spray pyrolysis fabrication of a nanophase ZnMn2O4 anode towards high-performance Li-ion batteries. RSC Adv 5:13667–13673

    Article  CAS  Google Scholar 

  15. Guo LY, Ru Q, Song X, Hu SJ, Mo YD (2015) Pineapple-shaped ZnCo2O4 microspheres as anode materials for lithium ion batteries with prominent rate performance. J Mater Chem 3:8683–8692

    Article  CAS  Google Scholar 

  16. Zhu YQ, Cao CB, Zhang JT, Xu XY (2015) Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application. J Mater Chem A 3:9556–9564

    Article  CAS  Google Scholar 

  17. AbdelHamid AA, Yang XF, Yang JH, Chen XJ, Ying JY (2016) Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 26:425–437

    Article  CAS  Google Scholar 

  18. Chen B, Liu EZ, Cao TT, He F, Shi CS, He CN, Ma LY, Li QY, Li JJ, Zhao NQ (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256

    Article  CAS  Google Scholar 

  19. Zhou YL, Yan D, Xu HY, Feng JK, Jiang XL, Yue J, Yang J, Qian YT (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528–537

    Article  CAS  Google Scholar 

  20. Liu Y, Shi YD, Liu X, Li HX (2017) A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Appl Surf Sci 396:58–66

    Article  CAS  Google Scholar 

  21. Xiao L, Wang SY, Wang YF, Meng W, Deng BH, Qu DY, Xie ZZ, Liu JP (2016) High capacity and self-stabilized manganese carbonate microspheres as anode material for lithium ion batteries. ACS Appl Mater Interfaces 8(38):25369–25378

    Article  CAS  PubMed  Google Scholar 

  22. Lee H-K, Sakemi D, Selyanchyn R, Lee CG, Lee SW (2014) Titania nanocoating on MnCO3 microspheres via liquid-phase deposition for fabrication of template-assisted core-shell-and hollow-structured composites. ACS Appl Mater Interfaces 6(1):57–64

    Article  CAS  PubMed  Google Scholar 

  23. Zhong YR, Yang M, Zhou XL, Luo YT, Wei JM, Zhou Z (2015) Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites. Adv Mater 27(5):806–812

    Article  CAS  PubMed  Google Scholar 

  24. Yin JJ, Ding ZJ, Lei DL, Tang LK, Deng JJ, Li BH, He YB (2017) Zn-substituted CoCO3 embedded in carbon nanotubes network as high performance anode for lithium-ion batteries. J Alloy Compd 712:605–612

    Article  CAS  Google Scholar 

  25. Kang W, Yu DYW, Li W, Zhang Z, Yang X, Ng T-W, Zou R, Tang Y, Zhang W, Lee C-S (2015) Nanostructured porous manganese carbonate spheres with capacitive effects on the high lithium storage capability. Nanoscale 7(22):10146–10151

    Article  CAS  PubMed  Google Scholar 

  26. Zhou L, Kong X, Gao M, Lian F, Li B, Zhou Z, Cao H (2014) Hydrothermal fabrication of MnCO3@rGO composite as an anode material for high-performance lithium-ion batteries. Inorg Chem 53(17):9228–9234

    Article  CAS  PubMed  Google Scholar 

  27. Zhang R, Huang XX, Wang D, Hoang TKA, Yang Y, Duan XM, Chen P, Qin LC, Wen GW (2018) Single-phase mixed transition metal carbonate encapsulated by graphene: facile synthesis and improved lithium storage properties. Adv Funct Mater. https://doi.org/10.1002/adfm.201705817

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao S, Feng F, Yu F, Shen Q (2015) Flower-to-petal structural conversion and enhanced interfacial storage capability of hydrothermally crystallized MnCO3 via the in-situ mixing of graphene oxide. J Mater Chem A 3(47):24095–24102

    Article  CAS  Google Scholar 

  29. Yao B, Ding ZJ, Feng XY, Yin LW, Shen Q, Shi YC, Zhang JX (2014) Enhanced rate and cycling performance of FeCO3/graphene composite for high energy Li ion battery anodes. Electrochim Acta 148:283–290

    Article  CAS  Google Scholar 

  30. Zhang L, Mei T, Wang X, Wang J, Li J, Xiong W, Chen Y, Hao M (2015) Hierarchical architectured MnCO3 microdumbbells: facile synthesis and enhanced performance for lithium-ion batteries. CrystEngComm 17(33):6450–6455

    Article  CAS  Google Scholar 

  31. Zhang F, Zhang RH, Liang GM, Feng JK, Lu L, Qian YT (2013) Carboxylated carbon nanotube anchored MnCO3 nanocomposites as anode materials for advanced lithium-ion batteries. Mater Lett 111:165–168

    Article  CAS  Google Scholar 

  32. Huang ZD, Zhang B, He YB, Oh SW, Yu Y, Kim JK (2012) Addition of silane functionalized carbon nanotubes for improved rate capability of LiNi1/3Co1/3Mn1/3O2 cathodes for lithium ion batteries. J Electrochem Soc 159(12):A2024–A2028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51402155), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (YX03002), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Foundation of NJUPT (NY217077) and PolyU Start-up Fund for New Recruits (No. 1-ZE8R).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Dong Huang or Yanwen Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Fang, Y., Yang, J. et al. Boosting the lithium-ion storage performance of dense MnCO3 microsphere anodes via Sb-substitution and construction of neural-like carbon nanotube networks. J Appl Electrochem 48, 1105–1113 (2018). https://doi.org/10.1007/s10800-018-1212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1212-4

Keywords

Navigation