Skip to main content
Log in

Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Materials obtained from thermal treatment of thermally treated NiCoFe-layered double hydroxides (LDH) with different Ni:Co ratios were evaluated as bifunctional catalysts for Oxygen Reduction Evolution and Evolution Reduction Reactions in alkaline media. The structural properties of synthesized materials were characterized by X-ray diffraction, Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopies, whereas the basicity of each material was evaluated by temperature-programmed desorption of carbon dioxide. The results revealed the presence of inverse spinel structure with different compositions and a NiO phase with different amounts in the sample, while the electrochemical results showed a high activity towards oxygen reactions. The sample with higher amount of NiO and the lowest substitution grade on tetrahedral sites in the spinel-type structure exhibited the best catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee J, Jeong B, Ocon JD (2013) Oxygen electrocatalysis in chemical energy conversion and storage technologies. Curr Appl Phys 13:309–321. https://doi.org/10.1016/j.cap.2012.08.008

    Article  Google Scholar 

  2. Cai X, Lai L, Lin J, Shen Z (2017) Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Materials Horizons. https://doi.org/10.1039/C7MH00358G

    Article  Google Scholar 

  3. Wang Z-L, Xu D, Xu J-J, Zhang X-B (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786. https://doi.org/10.1039/C3CS60248F

    Article  CAS  PubMed  Google Scholar 

  4. Davari E, Ivey DG (2017) Synthesis and electrochemical performance of manganese nitride as an oxygen reduction and oxygen evolution catalyst for zinc–air secondary batteries. J ApplElectrochemy 47:815–827. https://doi.org/10.1007/s10800-017-1084-z

    Article  CAS  Google Scholar 

  5. Pletcher D, Li X, Price SWT, Russell AE, Sönmez T, Thompson SJ (2016) Comparison of the spinels Co3O4 and NiCo2O4 as bifunctional oxygen catalysts in alkaline media. Electrochim Acta 188:286–293. https://doi.org/10.1016/j.electacta.2015.10.020

    Article  CAS  Google Scholar 

  6. Jung J-I, Risch M, Park S, Kim MG, Nam G, Jeong H-Y, Shao-Horn Y, Cho J (2016) Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ Sci 9:176–183. https://doi.org/10.1039/C5EE03124A

    Article  CAS  Google Scholar 

  7. Ko JS, Chervin CN, Vila MN, DeSario PA, Parker JF, Long JW, Rolison DR (2017) Electroanalytical assessment of the effect of Ni:Fe stoichiometry and architectural expression on the bifunctional activity of nanoscale NiyFe1−yOx. Langmuir. https://doi.org/10.1021/acs.langmuir.7b01046

    Article  PubMed  Google Scholar 

  8. Sönmez T, Thompson SJ, Price SWT, Pletcher D, Russell AE (2016) Voltammetric studies of the mechanism of the oxygen reduction in alkaline media at the spinels Co3O4 and NiCo2O4. J Electrochem Soc 163:H884–H890. https://doi.org/10.1149/2.0111610jes

    Article  CAS  Google Scholar 

  9. Xiao Y, Hu C, Qu L, Hu C, Cao M (2013) Three-dimensional macroporous NiCo2O4 sheets as a non-noble catalyst for efficient oxygen reduction reactions. Chem Eur J 19:14271–14278. https://doi.org/10.1002/chem.201302193

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Gong M, Liang Y, Feng J, Kim J-E, Wang H, Hong G, Zhang B, Dai H (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 4:1805. https://doi.org/10.1038/ncomms2812. https://www.nature.com/articles/ncomms2812#supplementary-information

  11. Wang L, Lin C, Huang D, Zhang F, Wang M, Jin J (2014) A comparative study of composition and morphology effect of NixCo1−x(OH)2 on oxygen evolution/reduction reaction. ACS Appl Mater Interfaces 6:10172–10180. https://doi.org/10.1021/am5014369

    Article  CAS  PubMed  Google Scholar 

  12. Fu G, Cui Z, Chen Y, Xu L, Tang Y, Goodenough JB (2017) Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn–air battery. Nano Energy 39:77–85. https://doi.org/10.1016/j.nanoen.2017.06.029

    Article  CAS  Google Scholar 

  13. Zhong H, Tian R, Li D, Tang P, Alonso-Vante N, Feng Y (2017) Tuning the adsorption properties of layered double hydroxides to tailor highly active oxygen bifunctional electrocatalysts. J Electrochem Soc 164:F491-F498. https://doi.org/10.1149/2.0341706jes

    Article  CAS  Google Scholar 

  14. Zhan T, Liu X, Lu S, Hou W (2017) Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl Catal B 205:551–558. https://doi.org/10.1016/j.apcatb.2017.01.010

    Article  CAS  Google Scholar 

  15. Hsu C-S, Suen N-T, Hsu Y-Y, Lin H-Y, Tung C-W, Liao Y-F, Chan T-S, Sheu H-S, Chen S-Y, Chen HM (2017) Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies. Phys Chem Chem Phys 19:8681–8693. https://doi.org/10.1039/C6CP07630K

    Article  CAS  PubMed  Google Scholar 

  16. Guzmán-Vargas A, Vazquez-Samperio J, Oliver-Tolentino MA, Nava N, Castillo N, Macías-Hernández MJ, Reguera E (2018) Influence of cobalt on electrocatalytic water splitting in NiCoFe layered double hydroxides. J Mater Sci 53:4515–4526. https://doi.org/10.1007/s10853-017-1882-z

    Article  CAS  Google Scholar 

  17. Kumar A, Sharma P, Varshney D (2014) Structural, vibrational and dielectric study of Ni doped spinel Co ferrites: Co1−xNixFe2O4 (x = 0.0, 0.5, 1.0). Ceram Int 40:12855–12860. https://doi.org/10.1016/j.ceramint.2014.04.140

    Article  CAS  Google Scholar 

  18. Zhao X, Xu S, Wang L, Duan X, Zhang F (2010) Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Res 3:200–210. https://doi.org/10.1007/s12274-010-1023-3

    Article  CAS  Google Scholar 

  19. Bouhadouza N, Rais A, Kaoua S, Moreau M, Taibi K, Addou A (2015) Structural and vibrational studies of NiAlxFe2−xO4 ferrites (0 ≤ x ≤ 1). Ceram Int 41:11687–11692. https://doi.org/10.1016/j.ceramint.2015.05.132

    Article  CAS  Google Scholar 

  20. Wei Q-M, Li J-B, Chen Y-J (2001) Cation distribution and infrared properties of NixMn1−xFe2O4 ferrites. J Mater Sci 36:5115–5118. https://doi.org/10.1023/a:1012473207424

    Article  CAS  Google Scholar 

  21. da Silva SW, Nakagomi F, Silva MS, Franco A, Garg VK, Oliveira AC, Morais PC (2012) Raman study of cations’ distribution in ZnxMg1−x Fe2O4 nanoparticles. J Nanopart Res 14:798. https://doi.org/10.1007/s11051-012-0798-4

    Article  CAS  Google Scholar 

  22. Monteverde Videla AHA, Stelmachowski P, Ercolino G, Specchia S (2017) Benchmark comparison of Co3O4 spinel-structured oxides with different morphologies for oxygen evolution reaction under alkaline conditions. J Appl Electrochem 47:295–304. https://doi.org/10.1007/s10800-016-1040-3

    Article  CAS  Google Scholar 

  23. D’Ippolito V, Andreozzi GB, Bersani D, Lottici PP (2015) Raman fingerprint of chromate, aluminate and ferrite spinels. J Raman Spectrosc 46:1255–1264. https://doi.org/10.1002/jrs.4764

    Article  CAS  Google Scholar 

  24. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  25. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  26. Belova ID, Roginskaya YE, Shifrina RR, Gagarin SG, Plekhanov YV, Venevtsev YN (1983) Co (III) ions high-spin configuration in nonstoichiometric Co3O4 films. Solid State Commun 47:577–584. https://doi.org/10.1016/0038-1098(83)90754-8

    Article  CAS  Google Scholar 

  27. Kolotyrkin YM, Belova ID, Roginskaya YE, Kozhevnikov VB, Zakhar’in DS and Venevtsev YN (1984) High-spin configuration of Co(III) in nonstoichiometric Co3O4 films. XPS investigations. Mater Chem Phys 11:29–48. https://doi.org/10.1016/0254-0584(84)90086-5

    Article  CAS  Google Scholar 

  28. Muhich CL, Aston VJ, Trottier RM, Weimer AW, Musgrave CB (2016) First-principles analysis of cation diffusion in mixed metal ferrite spinels. Chem Mater 28:214–226. https://doi.org/10.1021/acs.chemmater.5b03911

    Article  CAS  Google Scholar 

  29. Maruyama J, Abe I (2003) Application of conventional activated carbon loaded with dispersed Pt to PEFC catalyst layer. Electrochim Acta 48:1443–1450. https://doi.org/10.1016/S0013-4686(03)00022-7

    Article  CAS  Google Scholar 

  30. Chen JYC, Miller JT, Gerken JB, Stahl SS (2014) Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion. Energy Environ Sci 7:1382–1386. https://doi.org/10.1039/C3EE43811B

    Article  CAS  Google Scholar 

  31. Wei C, Feng Z, Scherer GG, Barber J, Shao-Horn Y, Xu ZJ (2017) Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv Mater 29:1606800. https://doi.org/10.1002/adma.201606800

    Article  CAS  Google Scholar 

  32. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3:546. https://doi.org/10.1038/nchem.1069. https://www.nature.com/articles/nchem.1069#supplementary-information

Download references

Acknowledgements

The authors would like to thank the Instituto Politécnico Nacional for the financial support received through the multidisciplinary project 1820, and also the CONACYT project CEMIE-Ocean-249795: Transversal Line I-LT1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Oliver-Tolentino or R. de G. Gonzalez-Huerta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver-Tolentino, M., Vazquez-Samperio, J., Tufiño-Velázquez, M. et al. Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials. J Appl Electrochem 48, 947–957 (2018). https://doi.org/10.1007/s10800-018-1210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1210-6

Keywords

Navigation