Skip to main content
Log in

Cleaning protocols using surfactants and electrocleaning to remove food deposits on stainless steel surfaces

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrocleaning was used in the cleaning of food soils (starch and heat-denatured whey protein) adhered to stainless steel. The influence of anionic (linear alkylbenzene sulfonate, two polyoxyethylene lauryl ether carboxylic acids) and nonionic (fatty ethoxylated alcohol, alkylpolyglucoside, two polyoxyethylene glycerin esters) surfactants on detersive efficacy has been assessed. High levels of detergency (88.9%) were obtained when starchy dirt was used, doubling in some cases the washing efficiency achieved by cleaning-in-place methods. All the surfactants studied improved the detergency results with respect to that obtained with pH 13 solutions. However, when a denatured and dried whey protein was used, the electrocleaning method did not substantially improve detergency results, obtaining the highest detergency with 1 g/L alkylpolyglucoside at 60 °C (19.3%).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Müller-Steinhagen H, Malayeri MR, Watkinson AP (2007) Recent advances in heat exchanger fouling research, mitigation, and cleaning techniques. Heat Transf Eng 28:173–176. https://doi.org/10.1080/01457630601064397

    Article  CAS  Google Scholar 

  2. Kumar CG, Anand S (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27. https://doi.org/10.1016/S0168-1605(98)00060-9

    Article  CAS  PubMed  Google Scholar 

  3. Moerman F, Rizoulières P, Majoor FA (2014) Cleaning in place (CIP) in food processing. Hygiene in food processing, 2nd edn. https://doi.org/10.1533/9780857098634.3.305

    Chapter  Google Scholar 

  4. Suárez L, Díez MA, García R, Riera FA (2012) Membrane technology for the recovery of detergent compounds: a review. J Ind Eng Chem 18:1859–1873. https://doi.org/10.1016/j.jiec.2012.05.015

    Article  CAS  Google Scholar 

  5. Singh J, Kaur L, McCarthy OJ (2007) Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—a review. Food Hydrocoll 21:1–22. https://doi.org/10.1016/j.foodhyd.2006.02.006

    Article  CAS  Google Scholar 

  6. Otto C, Zahn S, Plenker J, Rom H (2014) Application of a flow cell for the comparative investigation of the cleaning behavior of starch and protein. J Food Eng 131:1–6. https://doi.org/10.1016/j.jfoodeng.2014.01.008

    Article  CAS  Google Scholar 

  7. Liu W, Christian GK, Zhang Z, Fryer PJ (2002) Development and use of a micromanipulation technique for measuring the force required to disrupt and remove fouling deposits. Food Bioprod Process 80:286–291. https://doi.org/10.1205/096030802321154790

    Article  Google Scholar 

  8. Liu W, Zhang Z, Fryer PJ (2006) Identification and modelling of different removal modes in the cleaning of a model food deposit. Chem Eng Sci 61:7528–7534. https://doi.org/10.1016/j.ces.2006.08.045

    Article  CAS  Google Scholar 

  9. Jurado E, Herrera-Márquez O, Plaza-Quevedo A, Vicaria JM (2015) Interaction between non-ionic surfactants and silica micro/nanoparticles. Influence on the cleaning of dried starch on steel surfaces. J Ind Eng Chem 21:1383–1388. https://doi.org/10.1016/j.jiec.2014.06.011

    Article  CAS  Google Scholar 

  10. Bylund G (1995) Dairy processing handbook, Tetra Pak Processing Systems. Lund

    Google Scholar 

  11. Pascual A, Llorca I, Canut A (2007) Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends Food Sci Technol 18:29–35

    Article  Google Scholar 

  12. Jurado-Alameda E, Altmajer-Vaz D, García-Román M, Jiménez-Pérez JL (2014) Study of heat-denatured whey protein removal from stainless steel surfaces in clean-in-place systems. Int Dairy J 38:195–198. https://doi.org/10.1016/j.idairyj.2014.01.006

    Article  CAS  Google Scholar 

  13. Huang Y-R, Hung Y-C, Hsu S-Y, Huang Y-W, Hwang D-F (2008) Application of electrolyzed water in the food industry. Food Control 19:329–345. https://doi.org/10.1016/j.foodcont.2007.08.012

    Article  CAS  Google Scholar 

  14. Jadeja R, Hung Y-C (2014) Efficacy of near neutral and alkaline pH electrolyzed oxidizing waters to control Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 from beef hides. Food Control 41:17–20. https://doi.org/10.1016/j.foodcont.2013.12.030

    Article  CAS  Google Scholar 

  15. Walker SP, Demirci A, Graves RE, Spencer SB, Roberts RF (2005) Response surface modelling for cleaning and disinfecting materials used in milking systems with electrolysed oxidizing water. Int J Dairy Technol 58:65–73. https://doi.org/10.1111/j.1471-0307.2005.00190.x

    Article  CAS  Google Scholar 

  16. Dev SRS, Demirci A, Graves RE, Puri VM (2014) Optimization and modeling of an electrolyzed oxidizing water based Clean-In-Place technique for farm milking systems using a pilot-scale milking system. J Food Eng 135:1–10. https://doi.org/10.1016/j.jfoodeng.2014.02.019

    Article  CAS  Google Scholar 

  17. Chen XD (2006) Patent US20060108234 Electrochemical process and apparatus. New Zealand

  18. Takenouchi T (2010) Behavior of hydrogen nanobubbles in alkaline electrolyzed water and its rinse effect for sulfate ion remained on nickel-plated surface. J Appl Electrochem 40:849–854. https://doi.org/10.1007/s10800-009-0068-z

    Article  CAS  Google Scholar 

  19. Liu G, Craig VSJ (2009) Improved cleaning of hydrophilic protein-coated surfaces using the combination of nanobubbles and SDS. ACS Appl Mater Interfaces 1:481–487. https://doi.org/10.1021/am800150p

    Article  CAS  PubMed  Google Scholar 

  20. Webster RD, Chilukuri SVV, Levesley JA, Webster BJ (2000) Electrochemical cleaning of microporous metallic filters fouled with bovine serum albumin and phosphate under low cross-flow velocities. J Appl Electrochem 30:915–924. https://doi.org/10.1023/A:1004001919627

    Article  CAS  Google Scholar 

  21. Vicaria JM, Herrera-Márquez O, Jurado-Alameda E (2018) Cleaning of dried starch adhered to stainless steel using electrocleaning: optimization of the experimental conditions. Food Control 84:41–48. https://doi.org/10.1016/j.foodcont.2017.07.031

    Article  CAS  Google Scholar 

  22. Bravo-Rodriguez V, Jurado-Alameda E, Reyes-Requena A, García-López AI, Bailón-Moreno R, Cuevas-Aranda M (2005) Determination of average molecular weight of commercial surfactants: alkylpolyglucosides and fatty alcohol ethoxylates. J Surf Det 8:341–346. https://doi.org/10.1007/s11743-005-0366-y

    Article  CAS  Google Scholar 

  23. Martínez-Gallegos JF, Bravo-Rodríguez V, Jurado-Alameda E, García-López AI (2011) Polyoxyethylene alkyl and nonyl phenol ethers complexation with potato starch. Food Hydrocoll 25:1563–1571. https://doi.org/10.1016/j.foodhyd.2011.01.010

    Article  CAS  Google Scholar 

  24. Bravo-Rodríguez V, Jurado-Alameda E, Martínez-Gallegos JF, Reyes-Requena A, García-López AI (2008) Formation of complexes between alkyl polyglycosides and potato starch. Colloid Surf B 65:92–97. https://doi.org/10.1016/j.colsurfb.2008.03.001

    Article  CAS  Google Scholar 

  25. Jurado E, Vicaria JM, García-Martín JF, García-Román M (2011) Wettability of aqueous solutions of eco-friendly surfactants (ethoxylated alcohols and polyoxyethylene glycerin esters). J Surf Deterg 15:251–258. https://doi.org/10.1007/s11743-011-1312-1

    Article  CAS  Google Scholar 

  26. Jurado-Alameda E, Vicaria JM, Altmajer-Vaz D, Luzón G, Jiménez-Pérez JL, Moya-Ramírez I (2012) Ozone degradation of alkylbenzene sulfonate in aqueous solutions using a stirred tank reactor with recirculation. J Environ Sci Health A 47:2205–2212. https://doi.org/10.1080/10934529.2012.707537

    Article  CAS  Google Scholar 

  27. Souza RCR, Andrade CT (2002) Investigation of the gelatinization and extrusion processes of corn starch. Adv Polym Technol 21:17–24. https://doi.org/10.1002/adv.10007

    Article  CAS  Google Scholar 

  28. Goode KR, Asteriadou K, Robbins PT, Fryer PJ (2013) Fouling and cleaning studies in the food and beverage industry classified by cleaning type. Compr Rev Food Sci Food Saf 12:121–143. https://doi.org/10.1111/1541-4337.12000

    Article  Google Scholar 

  29. Vicaria JM, Jurado E, Herrera-Márquez O (2014) Patent ES2518790. Procedimiento y dispositivo de limpieza de superficies metálicas utilizando una corriente continua. Madrid, Spain

  30. Goddard ED (1986) Polymer—surfactant interaction Part I. uncharged water-soluble polymers and charged surfactants. Colloid Surf 19:255–300. https://doi.org/10.1016/0166-6622(86)80340-7

    Article  CAS  Google Scholar 

  31. Jurado-Alameda E, Herrera-Márquez O, Martínez-Gallegos JF, Vicaria JM (2015) Starch-soiled stainless steel cleaning using surfactants and α-amylase. J Food Eng 160:56–64. https://doi.org/10.1016/j.jfoodeng.2015.03.024

    Article  CAS  Google Scholar 

  32. Jurado-Alameda E, Bravo-Rodríguez V, Altmajer-Vaz D, Siqueira RC (2011) Effectiveness of starch removal in a Bath-Substrate-Flow (BSF) device using surfactants and α-amylase. Food Hydrocoll 25:647–653. https://doi.org/10.1016/j.foodhyd.2010.07.031

    Article  CAS  Google Scholar 

  33. Radhika GS, Moorthy SN (2008) Effect of sodium dodecyl sulphate on the physicochemical, thermal and pasting properties of cassava starch. Starch 60:87–96. https://doi.org/10.1002/star.200700667

    Article  CAS  Google Scholar 

  34. Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H, Hu J (2006) Electrochemically controlled formation and growth of hydrogen nanobubbles. Langmuir 22:8109–8113. https://doi.org/10.1021/la060859f

    Article  CAS  PubMed  Google Scholar 

  35. Alheshibri M, Qian J, Jehannin M, Craig VSJ (2016) A history of nanobubbles. Langmuir 32:11086–11100. https://doi.org/10.1021/acs.langmuir.6b02489

    Article  CAS  PubMed  Google Scholar 

  36. Wu Z, Chen H, Dong Y, Mao H, Sun J, Chen S, Craig VSJ, Hu J (2008) Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. J Colloid Interface Sci 328:10–14. https://doi.org/10.1016/j.jcis.2008.08.064

    Article  CAS  PubMed  Google Scholar 

  37. Liu G, Wu Z, Craig VSJ (2008) Cleaning of protein-coated surfaces using nanobubbles: an investigation using a quartz crystal microbalance. J Phys Chem C 112:16748–16753. https://doi.org/10.1021/jp805143c

    Article  CAS  Google Scholar 

  38. Zhang X, Uddin MH, Yang H, Toikka G, Ducker W, Maeda N (2012) Effects of surfactants on the formation and the stability of interfacial nanobubbles. Langmuir 28:10471–10477. https://doi.org/10.1021/la301851g

    Article  CAS  PubMed  Google Scholar 

  39. Bird MR, Fryer PJ (1991) Experimental study of the cleaning of surfaces fouled by whey proteins. Food Bioprod Process 69:13–21

    Google Scholar 

  40. Zhu J, An H, Alheshibri M, Liu L, Terpstra PMJ, Liu G, Craig VSJ (2016) Cleaning with bulk nanobubbles. Langmuir 32:11203–11211. https://doi.org/10.1021/acs.langmuir.6b01004

    Article  CAS  PubMed  Google Scholar 

  41. Gillham CR, Fryer PJ, Hasting APM, Wilson DI (1999) Cleaning-in-place of whey protein fouling deposits: mechanisms controlling cleaning. Food Bioprod Process 77:127–136. https://doi.org/10.1205/096030899532420

    Article  CAS  Google Scholar 

  42. Naim R, Levitsky I, Gitis V (2012) Surfactant cleaning of UF membranes fouled by proteins. Sep Purif Technol 94:39–43. https://doi.org/10.1016/j.seppur.2012.03.031

    Article  CAS  Google Scholar 

  43. Bertuzzi MA, Armada M, Gottifredi JC (2007) Physicochemical characterization of starch based films. J Food Eng 82:17–25. https://doi.org/10.1016/j.jfoodeng.2006.12.016

    Article  CAS  Google Scholar 

  44. Tuladhar TR, Paterson WR, Wilson DI (2002) Investigation of alkaline cleaning-in-place of whey protein deposits using dynamic gauging. Food Bioprod Process 80:199–214. https://doi.org/10.1205/096030802760309223

    Article  CAS  Google Scholar 

  45. Madaeni SS, Rostami E, Rahimpour A (2010) Surfactant cleaning of ultrafiltration membranes fouled by whey. Int J Dairy Technol 63:273–283. https://doi.org/10.1111/j.1471-0307.2010.00577.x

    Article  Google Scholar 

  46. D’Souza NM, Mawson AJ (2005) Membrane cleaning in the dairy industry: a review. Crit Rev Food Sci Nutr 45:125–134. https://doi.org/10.1080/10408690490911783

    Article  CAS  PubMed  Google Scholar 

  47. Madaeni SS, Mansourpanah Y (2004) Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination 161:13–24. https://doi.org/10.1016/S0011-9164(04)90036-7

    Article  CAS  Google Scholar 

  48. Muñoz-Aguado MJ, Wiley DE, Fane AG (1996) Enzymatic and detergent cleaning of a polysulfone ultrafiltration membrane fouled with BSA and whey. J Membr Sci 117:175–187. https://doi.org/10.1016/0376-7388(96)00066-X

    Article  Google Scholar 

Download references

Acknowledgements

Project CTQ2015-69658-R (Ministerio de Economía y Competitividad, Spain) finances this reasearch. Whey protein concentrate (WPC) was kindly supplied by Abbott Laboratories (Granada, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Vicaria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicaria, J.M., Herrera-Márquez, O., Fernández-Casillas, C. et al. Cleaning protocols using surfactants and electrocleaning to remove food deposits on stainless steel surfaces. J Appl Electrochem 48, 1363–1372 (2018). https://doi.org/10.1007/s10800-018-1209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1209-z

Keywords

Navigation