Skip to main content
Log in

Effects of deposition time and current density on PbO2 electrosynthesis from methanesulfonate electrolyte

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work investigated the effects of current density and deposition time on the properties of electrodeposited PbO2. The PbO2 preparation was conducted on Ti/SnO2–Sb substrates by galvanostatic anodic deposition in a newly proposed methanesulfonate electrolytic solution. Phase constituents and microstructures of the deposited PbO2 coatings were characterized. Increasing current density in the range ≤ 100 mA cm− 2 leads to the formation of highly textured coatings with an increased content of α-PbO2 phase. Concurrently, a high current density favors a compact and flat surface morphology. The study of deposition time indicates a change of crystallite growth manner from an initially random growth to a later-stage preferred growth along distinct orientations. The change of crystallite growth is corroborated by the cross-sectional microstructures of the PbO2 deposits. The microstructural transition occurs only in the initial deposition stage. After a brief period, prolonged electrodeposition barely changes the surface morphology of PbO2 coatings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li X, Pletcher D, Walsh FC (2011) Electrodeposited lead dioxide coatings. Chem Soc Rev 40(7):3879–3894

    Article  CAS  PubMed  Google Scholar 

  2. Bi H, Yu C, Gao W, Cao P (2013) Physicochemical characterisation of electrosynthesized lead dioxide coatings on Ti/SnO2-Sb substrates. Electrochim Acta 113:446–453. https://doi.org/10.1016/j.electacta.2013.09.133

    Article  CAS  Google Scholar 

  3. Hao X, Wuqi G, Jia W, Jiangtao F, Honghui Y, Wei Y (2016) Preparation and characterization of titanium-based PbO2 electrodes modified by ethylene glycol. RSC Adv 6(9):7610–7617

    Article  CAS  Google Scholar 

  4. Li X, Xu H, Yan W (2016) Preparation and characterization of PbO2 electrodes modified with polyvinyl alcohol (PVA). RSC Adv 6(85):82024–82032

    Article  CAS  Google Scholar 

  5. Tatapudi P, Fenton JM (1993) Synthesis of ozone in a proton exchange membrane electrochemical reactor. J Electrochem Soc 140(12):3527–3530

    Article  CAS  Google Scholar 

  6. Amadelli R, Samiolo L, De Battisti A, Velichenko AB (2011) Electro-oxidation of some phenolic compounds by electrogenerated O3 and by direct electrolysis at PbO2 anodes. J Electrochem Soc 158(7):P87-P92

    Article  CAS  Google Scholar 

  7. Zhao G, Zhang Y, lei Y, Lv B, Gao J, Zhang Y, Li D (2010) Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability. Environ Sci Technol 44(5):1754–1759. https://doi.org/10.1021/es902336d

    Article  CAS  PubMed  Google Scholar 

  8. Saaidia S, Delimi R, Benredjem Z, Mehellou A, Djemel A, Barbari K (2017) Use of a PbO2 electrode of a lead-acid battery for the electrochemical degradation of methylene blue. Sep Sci Technol 52:1602–1614

    CAS  Google Scholar 

  9. Li X, Xu H, Yan W (2017) Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode. J Alloy Compd 718:386–395. https://doi.org/10.1016/j.jallcom.2017.05.147

    Article  CAS  Google Scholar 

  10. Maharana D, Niu J, Rao NN, Xu Z, Shi J (2015) Electrochemical degradation of triclosan at a Ti/SnO2-Sb/Ce-PbO2 anode. CLEAN-Soil Air Water. https://doi.org/10.1002/clen.201400180

    Article  Google Scholar 

  11. Sirés I, Low CTJ, Ponce-de-León C, Walsh FC (2010) The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions. Electrochim Acta 55(6):2163–2172. https://doi.org/10.1016/j.electacta.2009.11.051

    Article  CAS  Google Scholar 

  12. Devilliers D, Thi MD, Mahé E, Dauriac V, Lequeux N (2004) Electroanalytical investigations on electrodeposited lead dioxide. J Electroanal Chem 573(2):227–239

    Article  CAS  Google Scholar 

  13. Bi H, Yu C, Gao W, Cao P (2014) Physicochemical characterization of electrosynthesized PbO2 coatings: the effect of Pb2+ concentration and current density. J Electrochem Soc 161(6):D327-D332

    Article  CAS  Google Scholar 

  14. Yang W, Yang W, Lin X (2012) Research on PEG modified Bi-doping lead dioxide electrode and mechanism. Appl Surf Sci 258(15):5716–5722. https://doi.org/10.1016/j.apsusc.2012.02.073

    Article  CAS  Google Scholar 

  15. Sirés I, Low C, Ponce-de-León C, Walsh F (2010) The deposition of nanostructured β-PbO2 coatings from aqueous methanesulfonic acid for the electrochemical oxidation of organic pollutants. Electrochem Commun 12(1):70–74

    Article  CAS  Google Scholar 

  16. Zheng Y, Su W, Chen S, Wu X, Chen X (2011) Ti/SnO2–Sb2O5–RuO2/α-PbO2/β-PbO2 electrodes for pollutants degradation. Chem Eng J 174(1):304–309

    Article  CAS  Google Scholar 

  17. He S, Xu R, Wang J, Han S, Chen B (2016) The temperature effects on kinetics of PbO2 electrosynthesis process in alkaline bath. RSC Adv 6:88350–88357

    Article  CAS  Google Scholar 

  18. An H, Li Q, Tao D, Cui H, Xu X, Ding L, Sun L, Zhai J (2011) The synthesis and characterization of Ti/SnO2–Sb2O3/PbO2 electrodes: the influence of morphology caused by different electrochemical deposition time. Appl Surf Sci 258(1):218–224

    Article  CAS  Google Scholar 

  19. Li X, Pletcher D, Walsh FC (2009) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II): part VII. Further studies of the lead dioxide positive electrode. Electrochim Acta 54(20):4688–4695

    Article  CAS  Google Scholar 

  20. Velichenko AB, Amadelli R, Gruzdeva EV, Luk’yanenko TV, Danilov FI (2009) Electrodeposition of lead dioxide from methanesulfonate solutions. J Power Sources 191(1):103–110. https://doi.org/10.1016/j.jpowsour.2008.10.054

    Article  CAS  Google Scholar 

  21. Peng HY, Chen HY, Li WS, Hu SJ, Li H, Nan JM, Xu ZH (2007) A study on the reversibility of Pb(II)/PbO2 conversion for the application of flow liquid battery. J Power Sources 168(1):105–109. https://doi.org/10.1016/j.jpowsour.2006.11.016

    Article  CAS  Google Scholar 

  22. Zhao W, Xing J, Chen D, Jin D, Shen J (2016) Electrochemical degradation of Musk ketone in aqueous solutions using a novel porous Ti/SnO2-Sb2O3/PbO2 electrodes. J Electroanal Chem 775:179–188. https://doi.org/10.1016/j.jelechem.2016.05.050

    Article  CAS  Google Scholar 

  23. Mohd Y, Pletcher D (2006) The fabrication of lead dioxide layers on a titanium substrate. Electrochim Acta 52(3):786–793

    Article  CAS  Google Scholar 

  24. Duan X, Ma F, Yuan Z, Chang L, Jin X (2013) Electrochemical degradation of phenol in aqueous solution using PbO 2 anode. J Taiwan Inst Chem Eng 44(1):95–102

    Article  CAS  Google Scholar 

  25. Munichandraiah N (1992) Physicochemical properties of electrodeposited β-lead dioxide: effect of deposition current density. J Appl Electrochem 22(9):825–829

    Article  CAS  Google Scholar 

  26. Velichenko AB, Devilliers D (2007) Electrodeposition of fluorine-doped lead dioxide. J Fluor Chem 128(4):269–276

    Article  CAS  Google Scholar 

  27. Velichenko AB, Аmadelli R, Кnysh V, Luk’yanenko ТV, Danilov FI (2009) Kinetics of lead dioxide electrodeposition from nitrate solutions containing colloidal TiO2. J Electroanal Chem 632(1–2):192–196. https://doi.org/10.1016/j.jelechem.2009.04.021

    Article  CAS  Google Scholar 

  28. Velichenko A, Amadelli R, Benedetti A, Girenko D, Kovalyov S, Danilov F (2002) Electrosynthesis and physicochemical properties of PbO2 films. J Electrochem Soc 149(9):C445-C449

    Article  CAS  Google Scholar 

  29. Yu N, Gao L, Zhao S, Wang Z (2009) Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim Acta 54(14):3835–3841

    Article  CAS  Google Scholar 

  30. Egan DRP, Low CTJ, Walsh FC (2011) Electrodeposited nanostructured lead dioxide as a thin film electrode for a lightweight lead-acid battery. J Power Sources 196(13):5725–5730. https://doi.org/10.1016/j.jpowsour.2011.01.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zhen He acknowledges the support from New Zealand Ministry of Foreign Affairs and Trade for offering a doctoral scholarship for his study at the University of Auckland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Hayat, M.D., Yuan, X. et al. Effects of deposition time and current density on PbO2 electrosynthesis from methanesulfonate electrolyte. J Appl Electrochem 48, 783–791 (2018). https://doi.org/10.1007/s10800-018-1194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1194-2

Keywords

Navigation