Skip to main content
Log in

Improvement in different properties of the permalloy by nano-Cr2O3 incorporation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper deals with the study of improvement in different properties of the Ni–Fe alloy matrix by incorporation of Cr2O3 nanoparticles. Ni–Fe/Cr2O3 nanocomposite coatings were electrodeposited from ethylene glycol bath at several current densities using nickel sulfamate and ferrous sulfate. The coatings were characterized by powder X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and atomic force microscopy. Although a change in the surface morphology from fine granular to coarse granular was observed on the incorporation of Cr2O3 nanoparticles, surface roughness of the composite coatings was found lower than the alloy at the optimum current density. At lower current density, preferred orientation of the coating was found along (111) plane while at higher current densities it was along (200) plane. An improvement in the microhardness of the Ni–Fe alloy was recorded (>900 HV) after the nano-Cr2O3 incorporation. Despite incorporation of ceramic particles above 5 wt%, lower electrical resistivity and higher corrosion resistance of the alloy matrix were retained in the nanocomposite coatings. The deposits have shown soft magnetic characteristics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Orinakova R, Turonova A, Kladekova D, Galova M, Smith RM (2006) Recent developments in electrodeposition of nickel and some nickel-based alloys. J Appl Electrochem 36:957

    Article  CAS  Google Scholar 

  2. Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 45:2535

    Article  CAS  Google Scholar 

  3. Arvinda CL, Muralidharan VS, Mayanna SM (2001) Role of ethylamines on the electrochemical behaviour of Ni-Fe alloy films. J Appl Electrochem 31:1227

    Article  Google Scholar 

  4. Zhao X, Dang Y, Yin H, Yuan Y, Lu J, Yang Z, Gu Y (2015) Evolution of the microstructure and microhardness of a new wrought Ni–Fe based superalloy during high temperature aging. J Alloys Compd 644:66

    Article  CAS  Google Scholar 

  5. Djokic SS, Maksimovic MD, Stefanavocic DC (1989) The effect of a.c. superimposed on d.c. and pulsating potential on the coercivity of electrodeposited Ni-Fe alloy films. J Appl Electrochem 19:802

    Article  CAS  Google Scholar 

  6. Suryanarayana C, Mukhopadhyay D, Patankar SN, Froes FH (1992) Grain size effects in nanocrystalline materials. J Mater Res 7:2114

    Article  CAS  Google Scholar 

  7. Benea L, Basa SB, Danaila E, Caron N, Raquet O, Ponthiaux P, Celis JP (2015) Fretting and wear behaviors of Ni, nano-WC composite coatings in dry and wet conditions. Mater Des 65:550

    Article  CAS  Google Scholar 

  8. Chen X, Hou C, Zhang Q, Li Y, Wang H (2012) One-step synthesis of Co–Ni ferrite, graphene nanocomposites with controllable magnetic and electrical properties. Mater Sci Eng B 177:1067

    Article  CAS  Google Scholar 

  9. Stojak JL, Talbot B (1999) Investigation of electrocodeposition using a rotating cylinder electrode. J Electrochem Soc 14(12):4504

    Article  Google Scholar 

  10. Asnavandi M, Ghorbani M, Kahram M (2013) Production of Cu–Sn–graphite–SiC composite coatings by electrodeposition. Surf Coat Technol 216:207

    Article  CAS  Google Scholar 

  11. Tripathi MK, Singh VB (2016) Microstructure and properties of Si3N4 and TiN nano-particles reinforced electrodeposited functional Ni-Fe matrix nanocomposite. J Electrochem Soc 163(8):D453

    Article  CAS  Google Scholar 

  12. Aruna ST, Muniprakash M, Grips VKW (2013) Effect of titania particles preparation on the properties of Ni–TiO2 electrodeposited composite coatings. J Appl Electrochem 43:805

    Article  CAS  Google Scholar 

  13. Fransaer J, Leunis E, Hirato T, Celis JP (2002) Aluminium composite coatings containing micrometre and nanometre-sized particles electroplated from a non-aqueous electrolyte. J Appl Electrochem 32:123

    Article  CAS  Google Scholar 

  14. Wang TG, Liu Y, Sina H, Shi C, Iyengar S, Melin S, Kim KH (2013) High-temperature thermal stability of nanocrystalline Cr2O3 films deposited on silicon wafers by arc ion plating. Surf Coat Technol 228:140

    Article  CAS  Google Scholar 

  15. Sadri E, Ashrafizadeh F (2013) Structural characterization and mechanical properties of plasma sprayed nanostructured Cr2O3-Ag composite coatings. Surf Coat Technol 236:91

    Article  CAS  Google Scholar 

  16. Tobia B, Winkler EL, Zysler RD, Granda M, Troiani HE (2010) Superparamagnetism in AFM Cr2O3 nanoparticles. J Alloys Compd 495:520

    Article  CAS  Google Scholar 

  17. Makhlouf SA (2004) Magnetic properties of Cr2O3 nanoparticles. J Magn Magn Mater 272:1530

    Article  Google Scholar 

  18. Richardson JT, Yiagas DI, Turk B, Foster K (1991) Origin of superparamagnetism in nickel oxide. J Appl Phys 70:6977

    Article  CAS  Google Scholar 

  19. Vollath D, Szabo DV, Willis JO (1996) Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma. Mater Lett 29:271

    Article  CAS  Google Scholar 

  20. Srivastava M, Balaraju JN, Ravishankar B, Rajam KS (2010) Improvement in the properties of nickel by nano-Cr2O3 incorporation. Surf Coat Technol 205:66

    Article  CAS  Google Scholar 

  21. Kumar K, Chandramohan R, Kalyanaraman D (2004) Effect of heat treatment on cobalt and nickel electroplated surfaces with Cr2O3 dispersions. Appl Surf Sci 227:383

    Article  CAS  Google Scholar 

  22. Sassan HB, Hamid ZA (2011) Electrodeposited Ni–Cr2O3 nanocomposite anodes for ethanol electrooxidation. Int J Hydrogen Energy 36:5117–5127

    Article  Google Scholar 

  23. Chaudhari AK, Singh VB (2016) Mechanical and physical properties of electrodeposited Ni-Fe, WO3 doped nanocomposite. Surf Coat Technol 307:683

    Article  CAS  Google Scholar 

  24. Singh DK, Singh VB (2014) Electrodeposition of Ni-SiC composite from a non-aqueous bath. J Electrochem Soc 158(2):D114

    Article  Google Scholar 

  25. Scherrer P (1998) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Gott Nachr 2:98

    Google Scholar 

  26. Timoshkov YV, Molchan IS, Labunov SV, Kurmashev VI, Gubarevich TM, Fransaer J, Celis JP (1998) Surface modification technologies, vol XI. Institute of Materials, London, p 991

    Google Scholar 

  27. Vogel AI (1956) A textbook of quantitative inorganic analysis. Longmans, Green & Co, London, p 794

    Google Scholar 

  28. Mendham EJ, Denney RC, Barnes JD, Thomas M (2003) Vogel’s textbook of quantitative chemical analysis, vol 6. Pearson Education Asia, New Delhi, p 394

    Google Scholar 

  29. Chaudhari AK, Singh VB (2015) Studies on electrodeposition, microstructure and physical properties of Ni-Fe/In2O3 nanocomposite. J Electrochem Soc 162(8):D341

    Article  CAS  Google Scholar 

  30. Guglielmi N (1972) Kinetics of the deposition of inert particles from electrolytic baths. J Electrochem Soc 119:1009

    Article  CAS  Google Scholar 

  31. Shojaeepour F, Abachi P, Purazrang K, Moghanian AH (2012) Production and properties of Cu/Cr2O3 nano-composites. Powder Technol 222:80

    Article  CAS  Google Scholar 

  32. Li H, Ebrahimi F (2003) Synthesis and characterization of electrodeposited nanocrystalline nickel–iron alloys. Mater Sci Eng A 347:93

    Article  Google Scholar 

  33. Li HQ, Ebrahimi F (2003) An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater 51:3905

    Article  CAS  Google Scholar 

  34. Zhou X, Shen Y (2013) Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf Coat Technol 235:433

    Article  CAS  Google Scholar 

  35. Morum S, Madsen DE, Frandsen C, Bahl CRH, Hansen MF (2007) Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J Phys 19:213202

    Google Scholar 

  36. Apostolova IN, Apostolov AT, Wesselinowa JM (2013) Spin–phonon interaction effects in pure and Fe-doped antiferromagnetic Cr2O3 nanoparticles. Solid State Commun 174:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the Council of Scientific and Industrial Research (CSIR- 01 (2678)—EMR II), New Delhi and BSR section University Grant commission, New Delhi. The authors also acknowledge Prof. R. K. Mandal, Department of Metallurgical Engineering, IIT BHU for providing microhardness testing, Prof. O. N. Srivastava, Department of Physics, BHU, Varanasi for TEM facility and Head, Department of Chemistry, BHU for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, A.K., Singh, V.B. Improvement in different properties of the permalloy by nano-Cr2O3 incorporation. J Appl Electrochem 47, 1009–1021 (2017). https://doi.org/10.1007/s10800-017-1095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1095-9

Keywords

Navigation