Skip to main content

Advertisement

Log in

Urchin-like α-FeOOH@MnO2 core–shell hollow microspheres for high-performance supercapacitor electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work details the design and synthesis of novel urchin-like α-FeOOH@MnO2 core–shell hollow microspheres for high-performance electrode materials for supercapacitors. The core–shell heterostructures were constructed by growing strip-like MnO2 nanostructures onto the urchin-like α-FeOOH hollow microspheres that were composed of nanorods. Based on the synergetic effects and multi-functionalities of both the MnO2 shell and urchin-like α-FeOOH hollow cores, the resulting urchin-like α-FeOOH@MnO2 core–shell hollow microspheres exhibited excellent electrochemical performance with a high specific capacitance of 597 F g−1 at 1 A g−1, good rate capability (capacitance retention of 74.2% at 10 A g−1), and remarkable cycling stability (capacitance retention of 97.1% after 2000 cycles). Moreover, an asymmetric supercapacitor fabricated using α-FeOOH@MnO2 as positive electrode and activated carbon as negative electrode was found to deliver a high energy density of 34.2 W h kg−1 and power density of 815 W kg−1.

Graphical Abstract

Urchin-like α-FeOOH@MnO2 hollow microspheres demonstrated a high specific capacitance, rate capability and cycling stability, suggesting its promising potential for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electr 7:637–644

    Article  CAS  Google Scholar 

  4. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    Article  CAS  Google Scholar 

  5. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  6. Wang JG, Kang F, Wei B (2015) Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog Mater Sci 74:51–124

    Article  CAS  Google Scholar 

  7. Li F, Zhang YX, Huang M, Xing Y, Zhang LL (2015) Rational design of porous MnO2 tubular arrays via facile and templated method for high performance supercapacitors. Electrochimi Acta 154:329–337.

    Article  CAS  Google Scholar 

  8. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423

    Article  CAS  Google Scholar 

  9. Zheng X, Wang H, Wang C, Deng Z, Chen L, Li Y, Hasan T, Su BL (2016) 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy 22:269–277

    Article  CAS  Google Scholar 

  10. Babu GA, Ravi G, Mahalingam T, Kumaresavanji M, Hayakawad Y (2015) Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications. Dalton Trans 44:4485–4497

    Article  Google Scholar 

  11. Dong X, Guo Z, Song Y, Hou M, Wang J, Wang Y, Xia Y (2014) Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv Funct Mater 24:3405–3412

    Article  CAS  Google Scholar 

  12. Jiang C, Zhao B, Cheng J, Li J, Zhang H, Tang Z, Yang J (2015) Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochimi Acta 173:399–407.

    Article  CAS  Google Scholar 

  13. Zhang YZ, Wang Y, Xie YL, Cheng T, Lai WY, Pang H, Huang W (2014) Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6:14354–14359

    Article  CAS  Google Scholar 

  14. Wang Y, Pan A, Zhu Q, Nie Z, Zhang Y, Tang Y, Liang S, Cao G (2014) Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. J Power Sources 272:107–112

    Article  CAS  Google Scholar 

  15. Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ASC Nano 9:5310–5317

    Article  CAS  Google Scholar 

  16. Gao S, Sun Y, Lei F, Liang L, Liu J, Bi W, Pan B, Xie Y (2014) Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem 126:13003–13007

    Article  Google Scholar 

  17. Wang Z, Liu Y, Gao C, Jiang H, Zhang J (2015) A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J Mater Chem A 3:20658–20663

    Article  CAS  Google Scholar 

  18. Zheng X, Han Z, Yao S, Xiao H, Chai F, Qu F, Wu X (2016) Spinous α-Fe2O3 hierarchical structures anchored on Ni foam for supercapacitor electrodes and visible light driven photocatalysts. Dalton Trans 45:7094–7103

    Article  CAS  Google Scholar 

  19. Chaudhari NK, Chaudhari S, Yu JS (2014) Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors. ChemSusChem 7:3102–3111

    Article  CAS  Google Scholar 

  20. Xia X, Tu J, Zhang Y, Wang X, Gu C, Zhao X, Fan HJ (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ASC Nano 6:5531–5538

    Article  CAS  Google Scholar 

  21. Guan C, Xia X, Meng N, Zeng Z, Cao X, Soci C, Zhang H, Fan HJ (2012) Hollow core-shell nanostructure supercapacitor electrodes: gap matters. Energy Environ Sci 5:9085–9090

    Article  CAS  Google Scholar 

  22. Grote F, Wen L, Lei Y (2014) Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. J Power Sources 256:37–42

    Article  CAS  Google Scholar 

  23. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106

    Article  CAS  Google Scholar 

  24. Huang M, Zhang Y, Li F, Wang Z, Alamusi, Hu N, Wen Z, Liu Q (2014) Merging of kirkendall growth and ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors. Sci Rep 4:4518

    Google Scholar 

  25. Li Y, Peng H, Zhang C, Chu M, Xiao P, Zhang Y (2015) Branched ultra-fine nickel oxide/manganese dioxide core-shell nanosheet arrays for electrochemical capacitors. RSC Adv 5:77115–77121

    Article  CAS  Google Scholar 

  26. Xu K, Li W, Liu Q, Li B, Liu X, An L, Chen Z, Zou R, Hu J (2014) Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J Mater Chem A 2:4795–4802

    Article  CAS  Google Scholar 

  27. Zhu L, Chang Z, Wang Y, Chen B, Zhu Y, Tang W, Wu Y (2015) Core-shell MnO2@Fe2O3 nanospindles as a positive electrode for aqueous supercapacitors. J Mater Chem A 3:22066–22072

    Article  CAS  Google Scholar 

  28. Lu XF, Chen XY, Zhou W, Tong YX, Li GR (2015) α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7:14843–14850.

    Article  CAS  Google Scholar 

  29. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    Article  CAS  Google Scholar 

  30. Zhi M, Xiang C, Li J, Li M, Wu Ni (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  CAS  Google Scholar 

  31. Wen T, Wu XL, Zhang S, Wang X, Xu AW (2015) Core-shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries. Chem-Asian J 10:595–601

    Article  CAS  Google Scholar 

  32. Li Z, Shao Mi, Zhou L, Zhang R, Zhang C, Han J, Wei M, Evans DG, Duan X (2016) A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy 20:294–304

    Article  CAS  Google Scholar 

  33. Zhang Y, Hao XD, Diao ZP, Li J, Guan YM (2014) One-pot controllable synthesis of flower-like CoFe2O4/FeOOH nanocomposites for high-performance supercapacitors. Mater Lett 123:229–234

    Article  CAS  Google Scholar 

  34. Zhang X, Xiao J, Zhang X, Meng Y, Xiao D (2016) Three-dimensional Co3O4 nanowires@amorphous Ni(OH)2 ultrathin nanosheets hierarchical structure for electrochemical energy storage. Electrochimi Acta 191:758–766

    Article  CAS  Google Scholar 

  35. Tian W, Wang X, Zhi C, Zhai T, Liu D, Zhang C, Golberg D, Bando Y (2013) Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2:754–763

    Article  CAS  Google Scholar 

  36. Jing M, Yang Y, Zhu Y, Hou H, Wu Z, Ji X (2014) An asymmetric ultracapacitors utilizing α-Co(OH)2/Co3O4 flakes assisted by electrochemically alternatingvoltage. Electrochimi Acta 141:234–240

    Article  CAS  Google Scholar 

  37. Liu R, Jiang Z, Liu Q, Zhu X, Liu L, Ni L, Shen C (2015) Novel red blood cell shaped α-Fe2O3 microstructures and FeO(OH) nanorods as high capacity supercapacitors. RSC Adv 5:91127–91133.

    Article  CAS  Google Scholar 

  38. Liu J, Zheng M, Shi X, Zeng H, Xia H (2016) Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv Funct Mater 26:919–930

    Article  CAS  Google Scholar 

  39. Chen K, Chen X, Xue D (2015) Hydrothermal route to crystallization of FeOOH nanorods via FeCl3·6H2O: effect of Fe3+concentration on pseudocapacitance of iron-based materials. Cryst Eng Comm 17:1906–1910

    Article  CAS  Google Scholar 

  40. Shen B, Guo R, Lang J, Liu L, Liu L, Yan X (2016) A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J Mater Chem A 4:8316–8327

    Article  CAS  Google Scholar 

  41. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529

    Article  CAS  Google Scholar 

  42. Welsh ID, Sherwood PMA (1989) Photoemission and electronic structure of FeOOH: distinguishing between oxide and oxyhydroxide. Phys Rev B 40:6386

    Article  CAS  Google Scholar 

  43. Wang J, Liu S, Zhang X, Liu X, Liu X, Li N, Zhao J, Li Y (2016) A high energy asymmetric supercapacitor based on flower-like CoMoO4/MnO2 heterostructures and activated carbon. Electrochimi Acta 213:663–671

    Article  CAS  Google Scholar 

  44. Ning P, Duan X, Ju X, Lin X, Tong X, Pan X, Wang T, Li Q (2016) Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors. Electrochimi Acta 210:754–761

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. 21206025 and 51405131) and the Natural Science Foundation of Hebei Province (Grant Nos. B2013402008 and E2015402088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Che or Aifeng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 353 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Che, H., Liu, A. et al. Urchin-like α-FeOOH@MnO2 core–shell hollow microspheres for high-performance supercapacitor electrode. J Appl Electrochem 47, 433–444 (2017). https://doi.org/10.1007/s10800-017-1051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1051-8

Keywords

Navigation