Skip to main content
Log in

Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPO4F electrode material. Structural and morphological features of LiVPO4F were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPO4F is modified to LiVPO4F/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPO4F/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPO4F/f-graphene composite, LiVPO4F/carbon, and LiVPO4F/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li GH, Azuma H, Tohda M (2002) Electrochem solid state 5:135–137

    Article  Google Scholar 

  2. Tao L, Rousse G, Chotard JN, Dupant L, Bruyere S, Hanzel D, Mali G, Dominko R, Levasseur S, Masquelier CJ (2014) Mater Chem A 2:2060–2070

    Article  CAS  Google Scholar 

  3. Ding KQ, Wang L, Li JJ, Jia HT, He XM (2011) Int J Electrochem Sci 6:6165–6176

    CAS  Google Scholar 

  4. Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N (2006) J Power Sources 160:516–522

    Article  CAS  Google Scholar 

  5. Komaba S, Myung S-T, Kumagai N, Kanouchi T, Oikawa K, Kamiyama T (2002) Solid State Ion 311:152–153

    Google Scholar 

  6. Yang Y, Xiao L, Zhao Y, Wang F (2008) Int J Electrochem Sci 3:67–74

    CAS  Google Scholar 

  7. He X, Wang L, Pu W, Zhang G, Jiang C, Wan C (2006) Int J Electrochem Sci 1:12–16

    CAS  Google Scholar 

  8. Choi D, Kumta PN (2007) J Power Sources 163:1064–1069

    Article  CAS  Google Scholar 

  9. Hsu K-F, Tsay S-Y, Hwang B-J (2004) J Mater Chem 14:2690–2695

    Article  CAS  Google Scholar 

  10. Recham N, Dupant L, Courty M, Djellab K, Larcher D, Armand M, Tarascon J-M (2009) Chem Mater 21:1096–1107

    Article  CAS  Google Scholar 

  11. Recham N, Chotard J-N, Jumas J-C, Laffont L, Armand M, Tarascon J-M (2010) Chem Mater 22:1142–1148

    Article  CAS  Google Scholar 

  12. Recham N, Chotard J-N, Dupant L, Djellab K, Armand M, Tarascon J-M (2013) J Electrochem Soc 156:993–999

    Article  Google Scholar 

  13. Ab Rani MA, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH, Hallett JP, Hunt PA, Niedermeyer H, Perez-Arlandis JM, Screams M, Welton T, Wilding R (2011) Phys Chem Chem Phys 13:16831–16840

    Article  CAS  Google Scholar 

  14. Jeon Y, Sung J, Seo C, Lim H, Cheong H, Kang M, Moon B, Ouchi Y, Kim D (2008) J Phys Chem 112:4735–4740

    Article  CAS  Google Scholar 

  15. Tarascon JM, Recham N, Armand M, Chotard JN, Barpanda P, Walker W, Dupont L (2010) Chem Mater 22:724–739

    Article  CAS  Google Scholar 

  16. Gong Z, Yang Y (2011) Energy Environ Sci 4:3223–3242

    Article  CAS  Google Scholar 

  17. Chen J (2013) Recent Pat Nanotechnol 7:2–12

    Article  CAS  Google Scholar 

  18. Yoon H, Lane GH, Shekibi Y, Howlett PC, Forsyth M, Best AS, MacFarlane DR (2013) Energy Environ Sci 6:979–986

    Article  CAS  Google Scholar 

  19. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Roder T, Sixta H (2005) Lenzinger Berichte 84:71–85

    CAS  Google Scholar 

  20. Song J, Wang L, Shao G, Shi M, Ma Z, Wang G, Song W, Liu S, Wang C (2014) Phys Chem Chem Phys 16:7728–7733

    Article  CAS  Google Scholar 

  21. Ju S, Peng H, Li G, Chen K (2012) Mater Lett 74:22–25

    Article  CAS  Google Scholar 

  22. Sun C, Rajasekhara S, Dong Y, Goodenough JB (2011) Acs Appl. Mater Interfaces 3:3772–3776

    Article  CAS  Google Scholar 

  23. Zhang L-L, Peng G, Liang G, Zhang P-C, Wang Z-H, Jiang Y, Huang Y-H, Lin H (2013) Electrochim Acta 90:433–439

    Article  CAS  Google Scholar 

  24. Zhang S, Meng FL, Wu Q, Liu FL, Gao H, Zhang M, Deng C (2013) Int J Electrochem Sci 8:6603–6609

    CAS  Google Scholar 

  25. Pivko M, Bele M, Tchernychova E, Logar NZ, Dominko R, Gaberscek M (2012) Chem Mater 24:1041–1047

    Article  CAS  Google Scholar 

  26. Barker J, Saidi MY, Swoyer JL (2003) J Electrochem Soc 150:1394–1398

    Article  Google Scholar 

  27. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) J Electrochem Soc 152:1776–1779

    Article  Google Scholar 

  28. Groat, Raudsepp LA, Hawthorne M, Ecrit FC, Sherriff TS, Hartman BL (1990) J Am Miner 75:992–1008

    CAS  Google Scholar 

  29. Sebastian L, Gopalakrishnan J, Piffard JY (2002) J Mater Chem 12:374–377

    Article  CAS  Google Scholar 

  30. Tripathi R, Ramesh TN, Ellis BL, Nazar LF (2010) Angew Chem 49:8738–8742

    Article  CAS  Google Scholar 

  31. Kui ZS, Wei C, Hong LY, Guang ZZ, Jiu LC (2010) Trans Nonferrous Met Soc China 20:275–278

    Article  Google Scholar 

  32. Li Y, Zhou Z, Gao XP, Yan J (2006) J Power Sources 160:633–637

    Article  CAS  Google Scholar 

  33. Sheng-kui Z, Wei C, Yan-hong LI, Zheng-guang ZOU, Chang-jiu L (2010) Trans Nonferrous Met Soc China 20:275–278

    Article  Google Scholar 

  34. Zhang Q, Zhong S, Liu L, Liu J, Jiang J, Wang J, Li Y (2009) J Phys Chem Solids 70:1080–1082

    Article  CAS  Google Scholar 

  35. Kim Y, Kim H (2006) Electrochim Acta 52:1316–1322

    Article  CAS  Google Scholar 

  36. Wang Y, Zhao H, Ji Y, Wang L, Wei Z (2014) Solid State Ion 268:19–173

    Google Scholar 

  37. Liu Z, Peng W, Fan Y, Li X, Wang Z, Guo H, Wang J (2015) J Alloy Compd 639:496–503

    Article  CAS  Google Scholar 

  38. Cho J, Kim Y-W, Kim B, Lee J-G, Park B (2003) Angew Chem Int Ed 42:1618–1621

    Article  CAS  Google Scholar 

  39. Yim T, Lee HY, Kim HJ, Mun J, Kim S, Oh SM, Kim YG (2007) Bull Korean Chem Soc 28:1567–1571

    Article  CAS  Google Scholar 

  40. Whittingham MS, Song Y, Lutta S, Zavalij PY, Chernova NA (2005) J Mater Chem 15:3362–3379

    Article  CAS  Google Scholar 

  41. Mallesha M, Manjunatha R, Nethravathi C, Suresh GS, Rajamathi M, Melo JS, Venkatesha TV (2011) Bioelectrochemistry 81:104–108

    Article  CAS  Google Scholar 

  42. Barpanda P, Chotard J-N, Delacourt C, Reyaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon J-M (2011) Angew Chem Int Ed 50:2526–2531

    Article  CAS  Google Scholar 

  43. Li BC, Gu L, Tsukimoto S, Van Aken PA (2010) Adv Mater 22:3650–3654

    Article  CAS  Google Scholar 

  44. Plashnitsa LS, Obayashi EK, Okada S, Yamaki J (2011) Electrochem Acta 56:1344–1351

    Article  CAS  Google Scholar 

  45. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Soc 150:1394–1398

    Article  Google Scholar 

  46. Wang J-X, Wang Z-X, Shen L, Li X-H, Guo H-J, Tang W-J, Zhu Z-G (2013) Trans Nonferrous Met Soc China 23:1718–1722

    Article  CAS  Google Scholar 

  47. Huang Q, Li Y, Jin X, Zhaoa D, George Chen Z (2011) Energy Environ Sci 4:2125–2133

    Article  CAS  Google Scholar 

  48. Dahl K, Sando GM, Fox DM, Sutto TE, Owrutsky JC The Journal of Chemical Physics 123:084504 PMID 16164309

  49. Zhu J, Duan R, Zhang S, Jiang N, Zhang Y, Zhu J (2014) Springer Plus 3:585

    Article  Google Scholar 

  50. Kim H, Lim H-E, Kim S-W, Hong J, Seo D-H, Kim D-C, Jeon S, Park S, Kang K (2013) Sci Rep 2013(3):1506

    Google Scholar 

  51. Ma R, Shao L, Wu K, Shui M, Wang D, Long N, Ren Y, Shu J (2014) J Power Sources 248:847–885

    Article  Google Scholar 

  52. Wang GX, Yang L, Wang JZ, Bewlay S, Liu HK (2005) Electrochim Acta 50:4649–4654

    Article  CAS  Google Scholar 

  53. Chen T, Dai L (2013) Mater Today 16:7–8

    Article  Google Scholar 

  54. Manjunatha H, Venkatasha TV, Suresh GS (2012) J Solid State Electrochem 16:1941–1952

    Article  CAS  Google Scholar 

  55. Mahesh KC, Suresh GS, Bhattacharyya AJ, Venkatesha TV (2012) J Electrochem Soc 159:571–578

    Article  Google Scholar 

  56. Shivashankaraiah RB, Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2012) J Electrochem Soc 159:1–9

    Article  Google Scholar 

  57. Xiao PF, Lai MO, Lu L (2013) Solid State Ion 242:10–19

    Article  CAS  Google Scholar 

  58. Yang FO, Huang B, Li Z, Xu H (2008) J Phys Chem C 112:12003–12007

    Article  Google Scholar 

  59. Zhang Q, Zhong S, Liu L, Liu J, Jiang J, Wang J, Li Y (2009) J Phys Chem Solids 70:1080–1082

    Article  CAS  Google Scholar 

  60. Wang J, Li X, Wang Z, Huang B, Wang Z, Guo H (2014) J Power Sources 251:325–330

    Article  CAS  Google Scholar 

  61. Liu Q, Li Z-F, Liu Y, Zhang H, Ren Y, Sun C-J, Lu W, Zhou Y, Stanciu L, Stach Eric A, Xie J (2015) Nat Commun 6:6127

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the science and engineering Research board, Department of Science and Technology, New Delhi. We thank Sri. A. V. S. Murthy, Honorary Secretary, Rashtreeya Sikshana Samithi Trust and Dr. Snehalata G Nadiger, Principal, NMKRV College for women, Bangalore, for their continuous support and encouragement. We also thank Prof. N. Manu Chakravarthy for his valuable suggestions in writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurukar Shivappa Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangaswamy, P., Shetty, V.R., Suresh, G.S. et al. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process. J Appl Electrochem 47, 1–12 (2017). https://doi.org/10.1007/s10800-016-1007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1007-4

Keywords

Navigation