Skip to main content
Log in

Influence of vinylene carbonate as an additive on the electrochemical performances of graphite electrode in poly(methyl methacrylate) gel polymer electrolytes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Thermal initiation polymerization was used and optimized to prepare poly(methyl methacrylate) gel polymer electrolytes (PMMA-GPE). The impact of vinylene carbonate (VC) on the electrochemical performance of mesophase-pitch-based carbon fibers in PMMA-GPE for lithium-ion batteries was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and charge–discharge test. As expected, adding VC with a proper concentration of 1 vol% into GPE results in better electrolyte conductivity, cycling performance, and reversible capacity. Combining with Scanning electron microscopy, LSV and CV, detailed EIS investigation was used in order to better understand the modified mechanisms of graphite electrode in GPE with VC. The results reveal that the improvement of electrochemical performance is mainly due to the effective inhibition on growth of the internal resistance, which mainly attributed to the solid electrolyte interphase with an electrochemically and structurally stability mainly formed by the reduction and polymerization of VC at higher potential as restraining the side reaction of the reduction and polymerization of matrix in GPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhou YF, Xie S, Chen CH (2006) J Mater Sci 41:7492

    Article  CAS  Google Scholar 

  2. Zhang HP, Zhang P, Li GC, Wu YP, Sun DL (2009) J Power Sources 189:594

    Article  CAS  Google Scholar 

  3. Kumar A, Deka M, Banerjee S (2010) Solid State Ionics 181:609

    Article  CAS  Google Scholar 

  4. Kritzer P (2006) J Power Sources 161:1335

    Article  CAS  Google Scholar 

  5. Lijima T, Toyoguehi Y, Eda N (1985) Denki Kagaku 53:619

    Google Scholar 

  6. Quartarone E, Tomasi C, Mustarelli P, Appetecchi GB, Croce F (1998) Electrochim Acta 43:1435

    Article  CAS  Google Scholar 

  7. Kuwabata S, Tomiyori M (2002) J Electrochem Soc 149:A988

    Article  CAS  Google Scholar 

  8. Appetecchi GB, Croce F, Scrosati B (1995) Electrochim Acta 40:991

    Article  CAS  Google Scholar 

  9. Peled E (1979) J Electrochem Soc 126:2047

    Article  CAS  Google Scholar 

  10. Stjerndahl M, Bryngelsson H, Gustafsson T, Vaughey JT, Thackeray MM, Edström K (2007) Electrochim Acta 52:4947

    Article  CAS  Google Scholar 

  11. Zhang SS (2006) J Power Sources 162:1379

    Article  CAS  Google Scholar 

  12. Ein-EIi Y, Thomas SR, Koch VR (1997) J Electrochem Soc 144:1159

    Article  Google Scholar 

  13. Shina JS, Hana CH, Jung UH (2002) J Power Sources 109:47

    Article  Google Scholar 

  14. Choi YK, Chung K, Kim WS, Sung YE, Park SM (2002) J Power Sources 104:132

    Article  CAS  Google Scholar 

  15. Chung K, Lee JD, Kim EJ, Kim WS, Cho JH, Choi YK (2003) Microchem J 75:71

    Article  CAS  Google Scholar 

  16. Zheng H, Fu Y, Zhang H, Abe T, Ogumi Z (2006) Electrochem Solid-State Lett 9:A115

    Article  CAS  Google Scholar 

  17. Zhuang QC, Li J, Tian LL (2013) J Power Sources 222:177

    Article  CAS  Google Scholar 

  18. Wrodnigg GH, Besenhard JO, Winter M (1999) J Electrochem Soc 146:470

    Article  CAS  Google Scholar 

  19. Wrodnigg GH, Wrodnigg TM, JrO Besenhard, Winter M (1999) Electrochem Commun 1:148

    Article  CAS  Google Scholar 

  20. Yao W, Zhang Z, Gao J, Li J, Xu J, Wang Z, Yang Y (2009) Energy Environ Sci 2:1102

    Article  CAS  Google Scholar 

  21. Hu Y, Kong W, Li H, Huang X, Chen L (2004) Electrochem Commun 6:126

    Article  CAS  Google Scholar 

  22. Hu Y, Kong W, Wang Z, Li H, Huang X, Chen L (2004) Electrochem Solid-State Lett 7:A442

    Article  CAS  Google Scholar 

  23. Nam TH, Shim EG, Kim JG, Kim HS, Moon SI (2007) J Electrochem Soc 154:A957

    Article  CAS  Google Scholar 

  24. Fu Y, Chen C, Qiu C, Ma X (2009) J Appl Electrochem 39:2597

    Article  CAS  Google Scholar 

  25. Xu SD, Zhuang QC, Xu YQ, Wang J, Zhu YB (2013) Int J Electrochem Sci 8:8058

    CAS  Google Scholar 

  26. Simon B, Boeuve JP (1997), U.S.O. Patent 5, 626, 981

  27. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) Electrochim Acta 47:1423

    Article  CAS  Google Scholar 

  28. Contestabile M, Morselli M, Paraventi R, Neat RJ (2003) J Power Sources 119–121:943

    Article  Google Scholar 

  29. Aurbach D, Gnanaraj JS, Geissler W, Schmidt M (2004) J Electrochem Soc 151:A23

    Article  CAS  Google Scholar 

  30. Chen G, Zhuang GV, Richardson TJ, Liu G, Ross PNJ (2005) Electrochem Solid-State Lett 8:A344

    Article  CAS  Google Scholar 

  31. Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z (2005) J Electrochem Soc 152:A2046

    Article  CAS  Google Scholar 

  32. Barsoukov E, Kim JH, Yoon CO, Lee H (1999) Solid State Ionics 116:249

    Article  CAS  Google Scholar 

  33. Barsoukov E, Kim JH, Yoon CO, Lee H (1999) J Electrochem Soc 145:2711

    Article  Google Scholar 

  34. Aurbach D, Levi MD, Levi E, Schechter A (1997) J. Phys. Chem. B 101:2195

    Article  CAS  Google Scholar 

  35. Piao T, Park SM, Doh CH, Moon SI (1999) J Electrochem Soc 146:2794

    Article  CAS  Google Scholar 

  36. Funabiki A, Inaba M, Ogumi Z (1997) J Power Sources 68:227

    Article  CAS  Google Scholar 

  37. Zhang S, Shi P (2004) Electrochim Acta 49:1475

    Article  CAS  Google Scholar 

  38. Kim JS, Parkr YT (2000) J Power Sources 9:1172

    Google Scholar 

  39. Zhang SS, Xu K, Jow TR (2004) J Power Sources 130:281

    Article  CAS  Google Scholar 

  40. Naji A, Ghanbaja J, Willmann P, Humbert B, Billaud D (1996) J Power Sources 62:141

    Article  CAS  Google Scholar 

  41. Naji A, Ghanbaja J, Humbert B, Willmann P, Billaud D (1996) J Power Sources 63:33

    Article  CAS  Google Scholar 

  42. Ryoo HJ, Kim HT, Lee YG, Park JK, Moon SJ (1998) J Solid State Electrochem 3:1

    Article  CAS  Google Scholar 

  43. Qiu XY, Zhuang QC, Zhang QQ, Cao R, Ying PZ, Qiang YH, Sun SG (2012) Phys Chem Chem Phys 14:2617

    Article  CAS  Google Scholar 

  44. Zhuang QC, Wei T, Du LL, Cui YL, Fang L, Sun SG (2010) J Phys Chem C 114:8614

    Article  CAS  Google Scholar 

  45. Aurbach D (2000) J Power Sources 89:206

    Article  CAS  Google Scholar 

  46. Aurbach D, Levi MD, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L (1998) J Electrochem Soc 145:3024

    Article  CAS  Google Scholar 

  47. Levi MD, Aurbach D (1997) J Phys Chem B 101:4630

    Article  CAS  Google Scholar 

  48. Xu SD, Zhuang QC, Tian LL, Qin YP, Fang L, Sun SG (2011) J Phys Chem C 115:9210

    Article  CAS  Google Scholar 

  49. Tian LL, Zhuang QC, Li J (2011) Chin Sci Bull 56:3204

    Article  CAS  Google Scholar 

  50. Kim YO, Park SM (2001) J Electrochem Soc 148:A194

    Article  CAS  Google Scholar 

  51. Trost BM, Ball ZT, Joge T (2002) J Am Chem Soc 124:4408

    Article  Google Scholar 

  52. Chen XL, Li XL, Mei DH (2014) Chem Sus Chem 7:549

    Article  CAS  Google Scholar 

  53. Etacheri V, Haik O, Gofer Y (2012) Langmuir 28:965

    Article  CAS  Google Scholar 

  54. Lee HH, Wang YY, Wan CC (2005) J Appl Electrochem 35:615

    Article  CAS  Google Scholar 

  55. Koltypin M (2002) Electrochem Commun 4:17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Jiangsu province ordinary university graduate student research innovation Project (CXZZ13_0952) and the Fundamental Research Funds for the Central Universities (2013XK07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Chao Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhuang, QC., Shi, YL. et al. Influence of vinylene carbonate as an additive on the electrochemical performances of graphite electrode in poly(methyl methacrylate) gel polymer electrolytes. J Appl Electrochem 45, 1013–1023 (2015). https://doi.org/10.1007/s10800-015-0869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0869-1

Keywords

Navigation