Skip to main content

Advertisement

Log in

Numerical modeling and experimental validation of pouch-type lithium-ion battery

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The thermal behavior of pouch-type lithium-ion batteries during discharge and charge cycles is investigated by numerical simulation. A transient thermal model using finite element method software is developed through the modification of an electrochemical-thermal model. The developed model is validated with experimental data. For the experiment, a 304252 pouch cell is fabricated and tested in the laboratory. This model captures the dynamic responses of temperature, and distributions of current density and temperature, during discharge and charge cycles. Our results indicate that the discharge temperature is higher than the charge temperature at cut-off voltage. The temperature distribution upon discharge is similar to that of charge. On the other hand, different temperature distributions are observed at various C rates. The temperature profiles obtained from modeling and experiment are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c :

Lithium concentration (mol L−1)

C p :

Heat capacity (J kg−1 K−1)

D :

Diffusion coefficient (m2 s−1)

F :

Faraday constant (96,485 C mol−1)

\(\Delta H\) :

Enthalpy change of chemical reaction (J mol−1)

h :

Heat transfer coefficient (W m−2 K−1)

i :

Current density (A m−2)

I :

Applied current (A)

k :

Charge-transfer rate coefficient [A m−2 (m3 mol−1)2/3]

L :

Thickness (m)

n :

Charge number pertaining to the reaction

\(\dot{q}\) :

Heat generation per unit volume (W m−3)

r p :

Radius of electrode particles (m)

r :

Rate of reaction (mol s−1)

R :

Electrical resistance (Ω m)

ΔS :

Entropy change (J mol−1 K−1)

t :

Time (sec)

T :

Temperature (K)

V :

Voltage (V)

V o :

Open circuit voltage (V)

x:

Li content in LixMn2O4

y:

Li content in LiyC6

ε:

Volume fraction

φ:

Electrical potential (V)

κ:

Thermal conductivity (W m−1 K−1)

σ:

Electrical conductivity (S m−1)

ρ:

Density (kg m−3)

\(\upsilon\) :

Volume (m3)

1:

Electronic (solid) phase

2:

Ionic (liquid) phase

PCC:

Positive current collector

PE:

Positive electrode

NCC:

Negative current collector

NE:

Negative electrode

Max:

Maximum

References

  1. Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochem Soc 132:5–12

    Article  CAS  Google Scholar 

  2. Chen Y, Evans J (1993) Heat transfer phenomena in lithium polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc 140:1833–1838

    Article  CAS  Google Scholar 

  3. Newman J, Tiedemann W (1995) Temperature rise in a battery module with constant heat generation. J Electrochem Soc 142:1054–1057

    Article  CAS  Google Scholar 

  4. Pals C, Newman J (1995) Thermal modeling of the lithium/polymer battery. J Electrochem Soc 142:3274–3281

    Article  CAS  Google Scholar 

  5. Thomas K, Newman J (2003) Thermal modeling of porous insertion electrodes. J Electrochem Soc 150:A176–A192

    Article  CAS  Google Scholar 

  6. Srinivasan V, Wang CY (2003) Analysis of electrochemical and thermal behavior of li-ion cells. J Electrochem Soc 150:A98–A106

    Article  CAS  Google Scholar 

  7. Onda K, Kameyama H, Hanamoto T, Ito K (2003) Experimental study on heat generation behavior of small lithium-ion secondary batteries. J Electrochem Soc 150:A285–A291

    Article  CAS  Google Scholar 

  8. Inui Y, Kobayashi Y, Watanabe Y, Watase Y, Kitamura Y (2007) Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Convers Manag 48:2103–2109

    Article  CAS  Google Scholar 

  9. Kwon KH, Shin CB, Kang TH, Kim CS (2006) A two-dimensional modeling of a lithium-polymer battery. J Power Sources 163:151–157

    Article  CAS  Google Scholar 

  10. Kim US, Shin CB, Kim CS (2008) Effect of electrode configuration on the thermal behavior of a lithium-polymer battery. J Power Sources 180:909–916

    Article  CAS  Google Scholar 

  11. Forgez C, Vinh Do D, Friedrich G, Morcrette M, Delacourt C (2010) Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sources 195:2961–2968

    Article  CAS  Google Scholar 

  12. Jeon DH, Baek SM (2011) Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Convers Manag 52:2973–2981

    Article  CAS  Google Scholar 

  13. Kim US, Yi J, Shin CB, Han T, Park S (2011) Modelling the thermal behavior of a lithium-ion battery during charge. J Power Sources 196:5115–5121

    Article  CAS  Google Scholar 

  14. Kim GH, Smith K, Kim KJ, Santhanagopalan S, Pesaran A (2011) Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. J Electrochem Soc 158:A955–A969

    Article  CAS  Google Scholar 

  15. Ye Y, Shi Y, Cai N, Lee J, He X (2012) Electro-thermal modeling and experimental validation for lithium ion battery. J Power Sources 199:227–238

    Article  CAS  Google Scholar 

  16. Xiao M, Choe SY (2012) Dynamic modeling and analysis of a pouch type LiMn2O4/carbon high power Li-polymer battery based on electrochemical-thermal principles. J Power Sources 218:357–367

    Article  CAS  Google Scholar 

  17. Yi J, Kim US, Shin CB, Han T, Park S (2013) Three-dimensional Thermal Modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. J Electrochem Soc 160:A437–A443

    Article  CAS  Google Scholar 

  18. Wang BJ, Hilali SY (1995) Electrical-thermal modeling using ABAQUS. 1995 ABAQUS user’s conference, Paris, pp 771–785

  19. ABAQUS Analysis User’s Manual, Version 6.10 (2010) Dassault Systemes Simulia Corp, Providence, RI

  20. Doyle M, Newman J, Gozdz A, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903

    Article  Google Scholar 

  21. Baker D, Verbrugge M (1999) Temperature and current distribution in thin-film batteries. J Electrochem Soc 146:2413–2424

    Article  CAS  Google Scholar 

  22. Yue H, Huang X, Lv D, Yang Y (2009) Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochim Acta 54:5363–5367

    Article  CAS  Google Scholar 

  23. Perry RH, Green DW (1997) Perry’s Chemical Engineers’ Handbook, 7th edn. McGraw Hill, New York

    Google Scholar 

  24. Holman JP (1986) Heat transfer, 6th edn. McGraw-Hill, Singapore

    Google Scholar 

  25. Thomas KE, Bogatu C, Newman J (2001) Measurement of the entropy of reaction as a function of state of charge in doped and undoped lithium manganese oxide. J Electrochem Soc 148:A570–A575

    Article  CAS  Google Scholar 

  26. Ramadass P, Haran B, White R, Popov B (2002) Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. J Power Sources 112:606–613

    Article  CAS  Google Scholar 

  27. Ramadass P, Haran B, White R, Popov B (2003) Mathematical modeling of the capacity fade of Li-ion cells. J Power Sources 123:230–240

    Article  CAS  Google Scholar 

  28. Ramadass P, Haran B, Gomadam PM, White R, Popov B (2004) Development of first principles capacity fade model for Li-ion cells. J Electrochem Soc 151:A196–A203

    Article  CAS  Google Scholar 

  29. COMSOL Multyphisics User’s Guide, Version 3.5a (2008) COMSOL AB

  30. Valoen LO, Reimer JN (2005) Transport properties of LiPF6-based Li-ion battery electrolyte. J Electrochem Soc 152:A882–A891

    Article  CAS  Google Scholar 

  31. Albertus P, Christensen J, Newman J (2009) Experiments on and modeling of positive electrodes with multiple active materials for lithium-ion batteries. J Electrochem Soc 156:A606–A618

    Article  CAS  Google Scholar 

  32. Darling R, Newman J (1999) Dynamic Monte Carlo simulations of diffusion in LiyMn2O4. J Electrochem Soc 146:3765–3772

    Article  CAS  Google Scholar 

  33. Kim SW, Pyun SI (2001) Thermodynamic and kinetic approaches to lithium intercalation into Li1-δMn2O4 electrode using Monte Carlo simulation. Electrochim Acta 46:987–997

    Article  CAS  Google Scholar 

  34. Less GB, Seo JH, Han S, Sastry AM, Zausch J, Latz A, Schmidt S, Wieser C, Kehrwald D, Fell S (2012) Micro-scale modeling of Li-ion batteries: parameterization and validation. J Electrochem Soc 159:A697–A704

    Article  CAS  Google Scholar 

  35. Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 140:2490–2498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dongguk University Research Fund of 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyup Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JH., You, SJ. & Jeon, D.H. Numerical modeling and experimental validation of pouch-type lithium-ion battery. J Appl Electrochem 44, 1013–1023 (2014). https://doi.org/10.1007/s10800-014-0723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0723-x

Keywords

Navigation