Skip to main content

Advertisement

Log in

Tax progressivity and social welfare with a continuum of inequality views

  • Published:
International Tax and Public Finance Aims and scope Submit manuscript

Abstract

We develop a framework for analysing the loss of social welfare due to taxation, where tax progressivity and regressivity, measured by the Kakwani index, are given interpretation in terms of welfare gain and loss, respectively. Our framework generalises the framework of Kakwani and Son (J Econ Inequal 19:185–212, 2021), by taking account of the intermediate inequality views, a continuum of combinations of the relative view (equal relative change of all incomes does not change inequality) and the absolute view (equal absolute change of all incomes does not change inequality). The welfare loss of taxation is decomposed into three components, one being a generalised Kakwani index, which accommodates the intermediate inequality views. We show that for a progressive (regressive) tax, moving closer to the relative view reduces (increases) the importance of progressivity (regressivity) for the welfare impact of the tax. The perception of the importance of progressivity and regressivity is thus affected by the inequality view taken. The empirical application considers the welfare loss of taxation in Croatia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Kakwani et al. (2021) have developed a similar social welfare-based framework dealing with social benefits (i.e., transfers), rather than taxes.

  2. Greselin et al. (2020) applied the K&S general framework to derive the decomposition for the SWF underlying the Zenga inequality index.

  3. See also Amiel and Cowell (1999).

  4. Throughout the paper, our notation does not fully correspond to K&S’s notation.

  5. Note that in (1), by using the notation \(W_{x}\), we do not indicate that the social welfare depends on \(\rho\). We do so for notational simplicity only. We follow this convention throughout the paper, so that any expression depending on \(\rho\) is written for a given value of this parameter.

  6. It is evident from these expressions that \(W_{x}\) and \(W_{y}\) are in fact the equally distributed equivalent (EDE) incomes of the pre- and post-tax income distributions, respectively. Yet for an S-Gini SWF, the EDE income and the very SWF are identical. This is not the case for some other SWFs, such as the Atkinson SWF (Atkinson 1970). For that reason, any S-Gini SWF is money-metric, just as the corresponding EDE income, and in the empirical application we interpret it accordingly.

  7. Bosmans et al. (2014) noted that the \(\alpha\)-inequality approach to intermediate inequality is related to several other approaches. They showed that \(\alpha\) can be expressed as a function of the parameters used by Pfingsten (1987), Bossert and Pfingsten (1990), Besley and Preston (1988), Zoli (2003), Zheng (2004), and Yoshida (2005). Insomuch, our analysis is also related to these approaches. Given these relationships, in principle we could have started from the SWF used in, say, Bossert and Pfingsten (1990), and do the rest of our analysis. However, we have instead taken K&S as the point of departure, since that paper motivated us to write the current one.

  8. See also Amiel and Cowell (1999).

  9. In general, if inequality views are distributed in the population according to the cumulative distribution function \(A\left( \alpha \right)\), then.

    \(\begin{aligned} \Delta W & \equiv \mathop \smallint \limits_{0}^{1} N\left( \alpha \right) {\text{d}}A\left( \alpha \right) + \mathop \smallint \limits_{0}^{1} P\left( \alpha \right) {\text{d}}A\left( \alpha \right) + H = \mathop \smallint \limits_{0}^{1} - \left( {1 - \alpha G_{x} } \right) {\text{d}}A\left( \alpha \right) + \mathop \smallint \limits_{0}^{1} \left( {D_{t} - \alpha G_{x} } \right) {\text{d}}A\left( \alpha \right) + H \\ & = - \left( {1 - G_{x} \mathop \smallint \limits_{0}^{1} \alpha {\text{d}}A\left( \alpha \right)} \right) + \left( {D_{t} - G_{x} \mathop \smallint \limits_{0}^{1} \alpha {\text{d}}A\left( \alpha \right)} \right) + H = - \left( {1 - G_{x} {\mathbb{E}}\left[ \alpha \right]} \right) + \left( {D_{t} - G_{x} {\mathbb{E}}\left[ \alpha \right]} \right) + H \\ & \equiv N\left( {{\mathbb{E}}\left[ \alpha \right]} \right) + P\left( {{\mathbb{E}}\left[ \alpha \right]} \right) + H, \\ \end{aligned}\)

    where \({\mathbb{E}}\left[ \cdot \right]\) denotes expected value. Equation (19) is a special case where the distribution of \(\alpha\) is such that the shares of those with the relative and absolute inequality views are, respectively, \(\phi\) and \(1 - \phi\), so that \({\mathbb{E}}\left[ \alpha \right] = \phi\).

  10. In general, it does vary across taxes if the decomposition were multiplied by the average tax liability \(\mu_{t}\), as then both the neutral-tax and progressivity effects, and consequently the welfare loss, would depend on the size of the tax. But in our example, it would not vary even after such multiplication, since the five taxes are of identical size (i.e., have the same \(\mu_{t}\)).

  11. We conjecture that deriving analytical results requires assuming a parametric form for the pre-tax income distribution, a task going beyond the aim of this paper.

  12. 10% for municipalities and 12% (15%) for towns with a population under (above) 30 thousand, except for Zagreb, the capital, where the ceiling is 30%.

  13. Of course, it is always questionable whether SIC should be treated as taxes. It is not clear who bears the burden of SIC ultimately and how to take account of the insurance benefits that they provide. Also, what applies to one type of SIC need not apply to the other types.

  14. Income from service contracts is subject to the general health and pension contributions only.

  15. For other pensioners, the rate is 1 percent, and the contribution is paid from the government budget. We do not consider these contributions.

  16. We assume that pre-VAT prices are not affected by VAT, and thus treat the exempt services as zero-rated. Consequently, the possible cascading effects of the VAT paid on inputs in the production of the exempt services are not captured.

  17. Only the direct effects of excises are considered. For example, in the case of oil products or electricity, it is assumed that individuals pay the respective excises only through their direct consumption of oil products (as car fuel, for example) and electricity (in the household), but not indirectly through the consumption of goods and services produced using oil products or electricity as inputs.

  18. See https://euromod-web.jrc.ec.europa.eu/overview/what-is-euromod

  19. European Union Statistics on Income and Living Conditions.

  20. The number of adult equivalents according to the OECD-modified scale is 1 + 0.5 × (number of adults – 1) + 0.3 × number of children. Adults are persons aged 14 or more.

  21. The values plotted are given in Appendix, sect. A.9, Table 3.

  22. The calculations are performed using a Stata package KAKSONGEN, available at: https://sites.google.com/view/ivicarubil/software.

  23. The values plotted are given in Appendix, sect. A.9, Table 3.

  24. The values plotted are given in Appendix, sect. A.9, Table 3.

References

  • Amiel, Y., & Cowell, F. A. (1992). Measurement of income inequality: Experimental test by questionnaire. Journal of Public Economics, 47, 3–26.

    Article  Google Scholar 

  • Amiel, Y., & Cowell, F. A. (1999). Thinking about inequality. Cambridge University Press.

    Book  Google Scholar 

  • Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2(3), 244–263.

    Article  Google Scholar 

  • Besley, T. J., & Preston, I. P. (1988). Invariance and the axiomatics of income tax progression: a comment. Bulletin of Economic Research, 40(2), 159–163 https://doi.org/10.1111/j.1467-8586.1988.tb00262.x

    Article  Google Scholar 

  • Bosmans, K., Decancq, K., & Decoster, A. (2014). The relativity of decreasing inequality between countries. Economica, 81, 276–292.

    Article  Google Scholar 

  • Bossert, W., & Pfingsten, A. (1990). Intermediate inequality: Concepts, indices, and welfare implications. Mathematical Social Sciences, 19(2), 117–134.

    Article  Google Scholar 

  • De Agostini, P., Capéau, B., Decoster, A., Figari, F., Kneeshaw, J., Leventi, C., Manios, K., Paulus, A. Sutherland, S., & Vanheukelom, T. (2017). EUROMOD Extension to Indirect Taxation. EUROMOD Technical Note Series EMTN 3.0.

  • Del Río, C., & Ruiz-Castillo, J. (2000). Intermediate Inequality and Welfare. Social Choice and Welfare, 17(2), 223–239.

    Article  Google Scholar 

  • Del Río, C., & Ruiz-Castillo, J. (2001). Intermediate inequality and welfare: The case of Spain, 1980–81 to 1990–91. Review of Income and Wealth, 47(2), 221–237.

    Article  Google Scholar 

  • Diamond, P. A. (1998). Optimal income taxation: An example with a U-shaped pattern of optimal marginal tax rates. American Economic Review, 88, 83–95.

    Google Scholar 

  • Donaldson, D., & Weymark, J. A. (1980). A single-parameter generalization of the gini indices of inequality. Journal of Economic Theory, 22(1), 67–86.

    Article  Google Scholar 

  • Donaldson, D., & Weymark, J. A. (1983). Ethically flexible gini indices for income distributions in the continuum. Journal of Economic Theory, 29(2), 353–358.

    Article  Google Scholar 

  • Ebert, U. (2004). Coherent inequality views: Linear invariant measures reconsidered. Mathematical Social Sciences, 47(1), 1–20.

    Article  Google Scholar 

  • Greselin, F., Pellegrino, S., & Vernizzi, A. (2020). The Zenga equality curve: A new approach to measuring tax redistribution and progressivity. Review of Income and Wealth Forthcoming, 67, 950.

    Article  Google Scholar 

  • Jakobsson, U. (1976). On the measurement of the degree of progression. Journal of Public Economics, 5(1–2), 161–168.

    Article  Google Scholar 

  • Kakwani, N. C. (1977). Measurement of tax progressivity: An international comparison. Economic Journal, 87(345), 71–80.

    Article  Google Scholar 

  • Kakwani, N. C. (1980). On a class of poverty measures. Econometrica, 48(2), 437–446.

    Article  Google Scholar 

  • Kakwani, N., & Son, H. H. (2021). Normative measures of tax progressivity: An international comparison. Journal of Economic Inequality, 19(1), 185–212.

    Article  Google Scholar 

  • Kakwani, N., Wang, X., Xu, J., & Yue, X. (2021). Assessing the social welfare effects of government transfer programs: Some international comparisons. Review of Income and Wealth, 67, 1005.

    Article  Google Scholar 

  • Kolm, S. C. (1969). The optimal production of social justice. In J. Margolis & H. Guitton (Eds.), Public economics. London: Macmillan.

    Google Scholar 

  • Kolm, S. (1976a). Unequal inequalities I. Journal of Economic Theory, 12(3), 416–442.

    Article  Google Scholar 

  • Kolm, S. (1976b). Unequal inequalities II. Journal of Economic Theory, 13(1), 82–111.

    Article  Google Scholar 

  • Lambert, P. J. (1993). Redistribution through the income tax. In J. Creedy (Ed.), Taxation, poverty and income distribution. Aldershot: Edward Elgar.

    Google Scholar 

  • Mirrlees, J. A. (1971). An exploration in the theory of optimum income taxation. Review of Economic Studies, 38, 175–208.

    Article  Google Scholar 

  • Pfingsten, A. (1987). Axiomatically based local measures of tax progression. Bulletin of Economic Research, 39(3), 211–223 https://doi.org/10.1111/j.1467-8586.1987.tb00242.x

    Article  Google Scholar 

  • Saez, E. (2001). Using elasticities to derive optimal income tax rates. Review of Economic Studies, 68, 205–229.

    Article  Google Scholar 

  • Sen, A. (1974). Informational bases of welfare approaches. Journal of Public Economics, 3(4), 387–403.

    Article  Google Scholar 

  • Son, H. (2011). Equity and well-being: Measurement and policy practice. Routledge.

    Google Scholar 

  • Sutherland, H., & Figari, F. (2013). EUROMOD: The European Union tax-benefit microsimulation model. International Journal of Microsimulation, 6(1), 4–26.

    Article  Google Scholar 

  • Toumala, M. (1984). On the optimal income taxation: Some further numerical results. Journal of Public Economics, 23, 351–366.

    Article  Google Scholar 

  • Urban, I., Bezeredi, S., & Pezer, M. (2020). EUROMOD Country Report – Croatia (HR) 2017−2020. Available at: https://www.euromod.ac.uk/sites/default/files/country-reports/year11/Y11_CR_HR_Final.pdf

  • Urban, I. (2019). Measuring redistributive effects of taxes and benefits: beyond the proportionality standard. FinanzArchiv, 75(4), 413–443.

    Article  Google Scholar 

  • Yitzhaki, S. (1983). On an extension of the gini inequality index. International Economic Review, 24(3), 617.

    Article  Google Scholar 

  • Yoshida, T. (2005). Social welfare rankings of income distributions: A new parametric concept of intermediate inequality. Social Choice and Welfare, 24(3), 557–574.

    Article  Google Scholar 

  • Zheng, B. (2004). On Intermediate measures of inequality. In J. A. Bishop & Y. Amiel (Eds.) Studies on Economic Well-Being: Essays in the Honor of John P. Formby (Research on Economic Inequality, Vol. 12), Emerald Group Publishing Limited, Bingley.

  • Zoli, C. (2003). Characterizing inequality equivalence criteria. Mimeo.

Download references

Acknowledgements

We thank Nanak Kakwani for helpful comments on a draft version. We also thank three anonymous referees and the editor Nadine Riedel. The usual disclaimer applies. This work has been fully supported by Croatian Science Foundation under the project IP-2019-04-9924 (Impact of taxes and benefits on income distribution and economic efficiency – ITBIDEE). Some of the results presented in this paper are based on EUROMOD version I3.0+. Having been originally maintained, developed, and managed by the Institute for Social and Economic Research (ISER), since 2021 EUROMOD is maintained, developed, and managed by the Joint Research Centre (JRC) of the European Commission, in collaboration with EUROSTAT and national teams from the EU countries. We are indebted to the many people who have contributed to the development of EUROMOD. We use the microdata from the EU Statistics on Incomes and Living Conditions (EU-SILC) made available by Eurostat. The results and their interpretation are the authors’ responsibility.

Funding

This work has been fully supported by Croatian Science Foundation under the project IP-2019-04-9924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Rubil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Proof

Here we prove that \(D_{{t_{\alpha } }} = \alpha G_{x}\). By analogy with (7b) in Sect. 2.1, \(D_{{t_{\alpha } }}\) is given by

$$\begin{array}{*{20}c} {D_{{t_{\alpha } }} = 1 - \frac{{\Psi_{{t_{\alpha } }} }}{{\mu_{{t_{\alpha } }} }},} \\ \end{array}$$
(22)

where

$$\begin{aligned} \Psi_{{t_{\alpha } }} & = \mathop \smallint \limits_{0}^{\infty } t_{\alpha } \left( x \right)\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x = \mathop \smallint \limits_{0}^{\infty } \left[ {\alpha \tau x + \left( {1 - \alpha } \right)\tau \mu_{x} } \right]\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x \\ & = \alpha \tau \underbrace {{\mathop \smallint \limits_{0}^{\infty } x\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x}}_{{ = W_{x} }} + \left( {1 - \alpha } \right)\tau \mu_{x} \underbrace {{\mathop \smallint \limits_{0}^{\infty } \omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x}}_{ = 1} \\ & \begin{array}{*{20}c} { = \alpha \tau W_{x} + \left( {1 - \alpha } \right)\tau \mu_{x} .} \\ \end{array} \\ \end{aligned}$$
(23)

Plugging (23) into (22) and using the fact that \(\mu_{t\alpha } = \mu_{t}\), we get

$$\begin{aligned} D_{{t_{\alpha } }} & = 1 - \frac{{\alpha \tau W_{x} + \left( {1 - \alpha } \right)\tau \mu_{x} }}{{\mu_{{t_{\alpha } }} }} = 1 - \frac{{\alpha \tau W_{x} + \left( {1 - \alpha } \right)\tau \mu_{x} }}{{\mu_{t} }} = 1 - \frac{{\alpha \tau W_{x} + \tau \mu_{x} - \alpha \tau \mu_{x} }}{{\tau \mu_{x} }} \\ & \begin{array}{*{20}c} { = \frac{{ - \alpha \tau W_{x} + \alpha \tau \mu_{x} }}{{\tau \mu_{x} }} = \alpha \left( {1 - \frac{{W_{x} }}{{\mu_{x} }}} \right) = \alpha G_{x} ,} \\ \end{array} \\ \end{aligned}$$
(24)

where the last equality is due to (6a) in Sect. 2.1. ■

1.2 A.2 Proof

Here we prove that

$$\begin{array}{*{20}c} {\frac{1}{{\mu_{t} }}\left( {\Omega_{\alpha } - W_{x} } \right) = - \left( {1 - \alpha G_{x} } \right),} \\ \end{array}$$
(25)
$$\begin{array}{*{20}c} {\frac{1}{{\mu_{t} }}\left( {\Psi_{y} - \Omega_{\alpha } } \right) = D_{t} - \alpha G_{x} ,} \\ \end{array}$$
(26)
$$\begin{array}{*{20}c} {\frac{1}{{\mu_{t} }}\left( {W_{y} - \Psi_{y} } \right) = \frac{{\mu_{y} }}{{\mu_{t} }}\left( {D_{y} - G_{y} } \right).} \\ \end{array}$$
(27)

We first show that (25) holds:

$$\begin{aligned} \frac{1}{{\mu_{t} }}\left( {\Omega_{\alpha } - W_{x} } \right) = & \frac{1}{{\mu_{t} }}\left( {\mathop \smallint \limits_{0}^{\infty } y_{\alpha } \left( x \right)\omega \left( {F\left( x \right),\rho } \right)f\left( x \right)dx - \mathop \smallint \limits_{0}^{\infty } x\omega \left( {F\left( x \right),\rho } \right)f\left( x \right)dx} \right) \\ = & \frac{1}{{\mu_{t} }}\left( {\mathop \smallint \limits_{0}^{\infty } \left[ {x - t_{\alpha } \left( x \right)} \right]\omega \left( {F\left( x \right),\rho } \right)f\left( x \right)dx - \mathop \smallint \limits_{0}^{\infty } x\omega \left( {F\left( x \right),\rho } \right)f\left( x \right)dx} \right) \\ = & - \frac{1}{{\mu_{t} }}\mathop \smallint \limits_{0}^{\infty } t_{\alpha } \left( x \right)\omega \left( {F\left( x \right),\rho } \right)f\left( x \right)dx = - \frac{1}{{\mu_{t} }}\Psi_{t\alpha } = - \frac{1}{{\mu_{t} }}\mu_{{t_{\alpha } }} \left( {1 - D_{{t_{\alpha } }} } \right) = - \left( {1 - \alpha G_{x} } \right), \\ \end{aligned}$$
(28)

where the last two equalities are due to Eqs. (22) and (24), respectively. Next, we show that (26) holds:

$$\begin{aligned} \frac{1}{{\mu_{t} }}(\Psi_{y} - \Omega_{\alpha } ) = & \frac{1}{{\mu_{t} }}\left( {\mathop \smallint \limits_{0}^{\infty } y\left( x \right)\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x - \mathop \smallint \limits_{0}^{\infty } y_{\alpha } \left( x \right)\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x} \right) \\ = & \frac{1}{{\mu_{t} }}\mathop \smallint \limits_{0}^{\infty } \left[ {y\left( x \right) - \left( {x - t_{\alpha } \left( x \right)} \right)} \right]\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x \\ = & \frac{1}{{\mu_{t} }}\left( { - \mathop \smallint \limits_{0}^{\infty } t\left( x \right)\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x + \mathop \smallint \limits_{0}^{\infty } t_{\alpha } \left( x \right)\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x} \right) \\ = & \frac{1}{{\mu_{t} }}\mathop \smallint \limits_{0}^{\infty } \left[ { - t\left( x \right) + t_{\alpha } \left( x \right)} \right]\omega \left( {F\left( x \right),\rho } \right)f\left( x \right){\text{d}}x = \frac{1}{{\mu_{t} }}\left( { - \Psi_{t} + \Psi_{{t_{\alpha } }} } \right) \\ = & \frac{1}{{\mu_{t} }}\left[ { - \mu_{t} \left( {1 - D_{t} } \right) + \mu_{{t_{\alpha } }} \left( {1 - D_{{t_{\alpha } }} } \right)} \right] = D_{t} - D_{{t_{\alpha } }} = D_{t} - \alpha G_{x} \\ \end{aligned}$$
(29)

where the last three equalities are due to Eqs. (7b), (22), (24), and the fact that \(\mu_{t\alpha } = \mu_{t}\). Finally, we show that (27) holds:

$$\begin{array}{*{20}c} {\frac{1}{{\mu_{t} }}\left( {W_{y} - \Psi_{y} } \right) = \frac{1}{{\mu_{t} }}\left[ {\mu_{y} \left( {1 - G_{y} } \right) - \mu_{y} \left( {1 - D_{y} } \right)} \right] = \frac{{\mu_{y} }}{{\mu_{t} }}\left( {D_{y} - G_{y} } \right),} \\ \end{array}$$
(30)

where the first equality is due to Eqs. (6b) and (7a). ■

1.3 A.3 Proof

Here we prove that an \(\alpha\)-neutral tax cannot cause reranking. Without loss of generality, consider any two individuals, called \(A\) and \(B\), with the pre-tax incomes \(x_{A}\) and \(x_{B}\) such that \(x_{A} \ge x_{B}\). Suppose an \(\alpha\)-neutral tax is levied, with the mean tax liability \(\mu_{t}\) and the tax ratio \(\tau \equiv \mu_{t} /\mu_{x}\). Their respective post-tax incomes are:

$$\begin{array}{*{20}c} {y_{i} = x_{i} - \alpha \tau x_{i} - \left( {1 - \alpha } \right)\mu_{t} , i = A,B.} \\ \end{array}$$
(31)

Now suppose that the tax reranks \(A\) and \(B\) so that \(y_{A} < y_{B}\). We have:

$$\begin{array}{*{20}c} {x_{A} - \alpha \tau x_{A} - \left( {1 - \alpha } \right)\mu_{t} < x_{B} - \alpha \tau x_{B} - \left( {1 - \alpha } \right)\mu_{t} } \\ \end{array}$$
(32)
$$x_{A} \left( {1 - \alpha \tau } \right) < x_{B} \left( {1 - \alpha \tau } \right)$$
$$x_{A} < x_{B}$$

which contradicts \(x_{A} \ge x_{B}\). ■

1.4 A.4 Proof

Here we prove that \({\Delta }W \le 0\). Suppose the opposite holds:

$$\begin{gathered} \begin{array}{*{20}c} {\Delta W = N\left( \alpha \right) + P\left( \alpha \right) + H > 0} \\ \end{array} \hfill \\ - \left( {1 - \alpha G_{x} } \right) + \left( {D_{t} - \alpha G_{x} } \right) + \frac{{\mu_{y} }}{{\mu_{t} }}\left( {D_{y} - G_{y} } \right) > 0 \hfill \\ \end{gathered}$$
(33)
$$\begin{array}{*{20}c} {D_{t} - 1 + \frac{{\mu_{y} }}{{\mu_{t} }}\left( {D_{y} - G_{y} } \right) > 0.} \\ \end{array}$$
(34)

By definition of the concentration coefficient, \(D_{t} \in \left[ { - 1,1} \right]\); thus, \(D_{t} - 1 \le 0\). K&S (Appendix, Theorem 2) prove that \(\Psi_{y} \ge W_{y}\), which implies \(D_{y} \le G_{y}\); thus, \(\frac{{\mu_{y} }}{{\mu_{t} }}\left( {D_{y} - G_{y} } \right) \le 0\). Therefore, (33) cannot hold. ■

1.5 A.5 Proof

Here we prove that \({\Delta }W = 0\) only if \(D_{t} = 1\) and \(H = 0\). Suppose that \({\Delta }W = 0\). If so, then the left-hand side of (34) is equal to zero:

$$\begin{array}{*{20}c} {D_{t} - 1 + \frac{{\mu_{y} }}{{\mu_{t} }}\left( {D_{y} - G_{y} } \right) = 0,} \\ \end{array}$$
(35)

which is true only if \(D_{t} = 1\) and \(H: = \frac{{\mu_{y} }}{{\mu_{t} }}\left( {D_{y} - G_{y} } \right) = 0\). ■

1.6 A.6 Proof

Here we prove that \(\partial \pi \left( \alpha \right)/\partial \alpha < 0\), except if \(D_{t} = 1\).

$$\begin{aligned} \frac{\partial \pi \left( \alpha \right)}{{\partial \alpha }} = & \frac{\partial }{\partial \alpha }\left( {\frac{P\left( \alpha \right)}{{\left| {N\left( \alpha \right)} \right|}}} \right) = \frac{{\frac{\partial P\left( \alpha \right)}{{\partial \alpha }}\left| {N\left( \alpha \right)} \right| - P\left( \alpha \right)\frac{{\partial \left| {N\left( \alpha \right)} \right|}}{\partial \alpha }}}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{ - G_{x} \left| {N\left( \alpha \right)} \right| - P\left( \alpha \right)\frac{N\left( \alpha \right)}{{\left| {N\left( \alpha \right)} \right|}}\frac{\partial N\left( \alpha \right)}{{\partial \alpha }}}}{{\left| {N\left( \alpha \right)} \right|^{2} }} \\ = & \frac{{ - G_{x} \left| {N\left( \alpha \right)} \right| - P\left( \alpha \right)\frac{N\left( \alpha \right)}{{\left| {N\left( \alpha \right)} \right|}}G_{x} }}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{ - G_{x} \left| {N\left( \alpha \right)} \right| - P\left( \alpha \right)\left( { - 1} \right)G_{x} }}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{G_{x} \left( {P\left( \alpha \right) - \left| {N\left( \alpha \right)} \right|} \right)}}{{\left| {N\left( \alpha \right)} \right|^{2} }} \\ = & \frac{{G_{x} \left( {D_{t} - \alpha G_{x} - \left| { - \left( {1 - \alpha G_{x} } \right)} \right|} \right)}}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{G_{x} \left( {D_{t} - \alpha G_{x} - \left( {1 - \alpha G_{x} } \right)} \right)}}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{G_{x} \left( {D_{t} - 1} \right)}}{{\left| {N\left( \alpha \right)} \right|^{2} }}.\# \left( {36} \right) \\ \end{aligned}$$
(36)

Assuming \(G_{x} > 0\), the derivative cannot be positive, as that would require \(D_{t} > 1\), which cannot be true because by definition of the concentration coefficient, \(D_{t} \in \left[ { - 1,1} \right]\). The fraction can be either negative, when \(D_{t} < 1\), or zero, when \(D_{t} = 1\). ■

1.7 A.7 Proof

Here we prove that \(\partial \eta \left( \alpha \right)/\partial \alpha < 0\), except if \(H = 0\).

$$\begin{array}{*{20}c} {\frac{\partial \eta \left( \alpha \right)}{{\partial \alpha }} = \frac{\partial }{\partial \alpha }\left( {\frac{H}{{\left| {N\left( \alpha \right)} \right|}}} \right) = \frac{{\frac{\partial H}{{\partial \alpha }}\left| {N\left( \alpha \right)} \right| - H\frac{{\partial \left| {N\left( \alpha \right)} \right|}}{\partial \alpha }}}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{ - H\frac{{\partial \left( {1 - \alpha G_{x} } \right)}}{\partial \alpha }}}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{ - H\left( { - 1} \right)G_{x} }}{{\left| {N\left( \alpha \right)} \right|^{2} }} = \frac{{HG_{x} }}{{\left| {N\left( \alpha \right)} \right|^{2} }}.} \\ \end{array}$$
(37)

Assuming, \(G_{x} > 0\), the derivative is negative if \(H < 0\), and zero if \(H = 0\). ■

1.8 A.8 Proof

Here we prove that \(\tau /\tau^{*} \left( \alpha \right) = 1/\left( { - \delta \left( \alpha \right)} \right)\). Multiplying Eq. (18a) by \(\mu_{t}\), we obtain

$$\begin{array}{*{20}c} \begin{aligned} \mu_{t} \Delta W = & \mu_{t} N\left( \alpha \right) + \mu_{t} P\left( \alpha \right) + \mu_{t} H \\ W_{y} - W_{x} = & - \mu_{t} \left( {1 - \alpha G_{x} } \right) + \mu_{t} \left( {D_{t} - \alpha G_{x} } \right) + \mu_{y} \left( {D_{y} - G_{y} } \right). \\ \end{aligned} \\ \end{array}$$
(38)

The welfare loss \(W_{y} - W_{x}\) can as well be brought about by an \(\alpha\)-neutral tax. By definition of \(\alpha\)-neutral tax, this tax must be such that the average tax liability, \(\mu_{t}^{*} \left( \alpha \right)\), is implicitly given by

$$\begin{array}{*{20}c} {W_{y} - W_{x} = - \mu_{t}^{*} \left( \alpha \right)\left( {1 - \alpha G_{x} } \right).} \\ \end{array}$$
(39)

Thus, combining (38) and (39),

$$\begin{array}{*{20}c} { - \mu_{t}^{*} \left( \alpha \right)\left( {1 - \alpha G_{x} } \right) = - \mu_{t} \left( {1 - \alpha G_{x} } \right) + \mu_{t} \left( {D_{t} - \alpha G_{x} } \right) + \mu_{y} \left( {D_{y} - G_{y} } \right).} \\ \end{array}$$
(40)

Dividing (40) by \(- \mu_{x} \left( {1 - \alpha G_{x} } \right)\), we get:

$$\begin{aligned} \frac{{\mu_{t}^{*} \left( \alpha \right)}}{{\mu_{x} }} = & \frac{{\mu_{t} }}{{\mu_{x} }} + \frac{{\mu_{t} }}{{\mu_{x} }}\frac{{D_{t} - \alpha G_{x} }}{{ - \left( {1 - \alpha G_{x} } \right)}} + \frac{{\mu_{y} }}{{\mu_{x} }}\frac{{D_{y} - G_{y} }}{{ - \left( {1 - \alpha G_{x} } \right)}} = \tau - \tau \frac{{D_{t} - \alpha G_{x} }}{{1 - \alpha G_{x} }} - \tau \frac{{\mu_{y} }}{{\mu_{t} }}\frac{{D_{y} - G_{y} }}{{1 - \alpha G_{x} }} \\ = & \tau - \tau \frac{P\left( \alpha \right)}{{\left| {N\left( \alpha \right)} \right|}} - \tau \frac{H}{{\left| {N\left( \alpha \right)} \right|}} = \tau \left( {1 - \pi \left( \alpha \right) - \eta \left( \alpha \right)} \right) = - \left( { - 1 + \pi \left( \alpha \right) + \eta \left( \alpha \right)} \right)\tau = - \delta \left( \alpha \right)\tau . \\ \end{aligned}$$
(41)

Denoting \(\mu_{t}^{*} \left( \alpha \right)/\mu_{x} : = \tau^{*} \left( \alpha \right)\), a straightforward reorganisation of (41) gives (21). ■

1.9 A.9 Additional tables

See Tables 2 and 3.

Table 2 Data plotted on panel A of Fig. 1
Table 3 Data plotted on Figs. 5 and 6

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledić, M., Rubil, I. & Urban, I. Tax progressivity and social welfare with a continuum of inequality views. Int Tax Public Finance 30, 1266–1296 (2023). https://doi.org/10.1007/s10797-022-09752-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10797-022-09752-y

Keywords

JEL Classification

Navigation