Skip to main content
Log in

Dynamic network analysis of online interactive platform

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

The widespread use of online interactive platforms including social networking applications, community support applications draw the attention of academics and businesses. The basic trust of this research is that the very nature of these platforms can be best described as a network of entangled interactions. We agree with scholars that these platforms and features necessitate the call for theory of network as a novel approach to better understand their underpinnings. We examine one of the leading online interactive health networks in Europe. We demonstrate that the interactive platform examined exhibits essential structural properties that characterize most real networks. In particular, we focus on the largest connected component, so-called a giant component (GC), to better understand network formation. Dynamic network analysis helps us to observe how the GC has evolved over time and to identify a particular pattern towards emerging a GC. We suggest that the network measures examined for the platform should be considered as novel and complementary metrics to those used in conventional web and social analytics. We argue that various stages of GC development can be a promising indicator of the strength and endurance of the interactions on the platform. Platform managers may take into account basic stages of the emergence of the GC to determine varying degrees of product attractiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, C. R., & Zeithaml, C. P. (1984). Stage of the product life cycle, business strategy, and business performance. Academy of Management Journal, 27(1), 5–24.

    Google Scholar 

  • Aydin, M. N., & Perdahci, N. Z. (2016). Network analysis of an interactive health network. Journal of Internet Social Networking & Virtual Communities, 2016(2016), 1.

    Article  Google Scholar 

  • Barabási, A.-L. (2009). Scale-free networks: a decade and beyond. Science, 325(5939), 412.

    Article  Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  Google Scholar 

  • Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), 590–614.

    Article  Google Scholar 

  • Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks (Vol. 1). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. ICWSM, 8, 361–362.

    Google Scholar 

  • Bosslet, G. T., Torke, A. M., Hickman, S. E., Terry, C. L., & Helft, P. R. (2011). The patient–doctor relationship and online social networks: results of a national survey. Journal of General Internal Medicine, 26(10), 1168–1174.

    Article  Google Scholar 

  • Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., et al. (2000). Graph structure in the web. Computer Networks, 33(1), 309–320.

    Article  Google Scholar 

  • Butler, B. S. (2001). Membership size, communication activity, and sustainability: a resource-based model of online social structures. Information Systems Research, 12(4), 346–362.

    Article  Google Scholar 

  • Chambers, D., Wilson, P., Thompson, C., & Harden, M. (2012). Social network analysis in healthcare settings: a systematic scoping review. PloS One, 7(8), e41911.

    Article  Google Scholar 

  • Chau, M., & Xu, J. (2012). Business intelligence in blogs: understanding consumer interactions and communities. MIS Quarterly: Management Information Systems, 36(4), 1189–1216.

    Article  Google Scholar 

  • Chen, X., & Yang, C.-Z. (2010). Visualization of social networks. In B. Furht (Ed.), Handbook of social network technologies and applications (pp. 585–610): Springer, Boston.

  • Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS Quarterly, 36(4), 1165–1188.

    Article  Google Scholar 

  • Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006). The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2015–2020.

    Article  Google Scholar 

  • Enders, A., Hungenberg, H., Denker, H.-P., & Mauch, S. (2008). The long tail of social networking.: revenue models of social networking sites. European Management Journal, 26(3), 199–211.

    Article  Google Scholar 

  • Fetterman, D. (2009). Data grows up: The architecture of the Facebook platform (pp. 89–109). Inc: O’Reilly Media.

    Google Scholar 

  • Ghose, A., & Yang, S. (2009). An empirical analysis of search engine advertising: sponsored search in electronic markets. Management Science, 55(10), 1605–1622.

    Article  Google Scholar 

  • Gneiser, M., Heidemann, J., Klier, M., Landherr, A., & Probst, F. (2012). Valuation of online social networks taking into account users’ interconnectedness. Information Systems and e-Business Management, 10(1), 61–84.

    Article  Google Scholar 

  • Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 1360–1380.

  • Heidemann, J., Klier, M., & Probst, F. (2012). Online social networks: a survey of a global phenomenon. Computer Networks, 56(18), 3866–3878.

    Article  Google Scholar 

  • Johnson, S. L., Faraj, S., & Kudaravalli, S. (2014). Emergence of Power Laws in Online Communities: The Role of Social Mechanisms and Preferential Attachment. MIS Quarterly, 38(3), 795–808.

    Article  Google Scholar 

  • Jones, Q., Ravid, G., & Rafaeli, S. (2004). Information overload and the message dynamics of online interaction spaces: a theoretical model and empirical exploration. Information Systems Research, 15(2), 194–210.

    Article  Google Scholar 

  • Kane, G. C., Alavi, M., Labianca, G., & Borgatti, S. P. (2014). What’s different about social media networks? A framework and research agenda. MIS Quarterly, 38(1), 275–304.

    Article  Google Scholar 

  • Kim, J., & Wilhelm, T. (2008). What is a complex graph? Physica A: Statistical Mechanics and its Applications, 387(11), 2637–2652.

    Article  Google Scholar 

  • Kimura, M., Saito, K., Nakano, R., & Motoda, H. (2009). Finding influential nodes in a social network from information diffusion data. In M. J. Young, J. Salerno, H. Liu (Eds.), Social Computing and Behavioral Modeling (pp. 1–8): Springer, Boston.

  • Kleinberg, J. (2000). The small-world phenomenon: An algorithmic perspective. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, (pp 163–170): ACM, New York.

  • Kossinets, G., & Watts, D. J. (2006). Empirical analysis of an evolving social network. Science, 311(5757), 88–90.

    Article  Google Scholar 

  • Kumar, R., Novak, J., & Tomkins, A. (2010). P. S. Yu, J. Han, C. Faloutsos (Eds.), Structure and evolution of online social networks. In Link mining: models, algorithms, and applications (pp 337–357): Springer, New York.

  • Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 2.

    Article  Google Scholar 

  • Li, L., Xu, L., Jeng, H. A., Naik, D., Allen, T., & Frontini, M. (2008). Creation of environmental health information system for public health service: a pilot study. Information Systems Frontiers, 10(5), 531–542.

    Article  Google Scholar 

  • Ma, J., Zeng, D., & Zhao, H. (2012). Modeling the growth of complex software function dependency networks. Information Systems Frontiers, 14(2), 301–315.

    Article  Google Scholar 

  • Marsden, P. V. (1990). Network data and measurement. Annual Review of Sociology. doi:10.1146/annurev.so.16.080190.002251.

  • Milgram, S. (1967). The small world problem. Psychology today, 2(1), 60–67.

    Google Scholar 

  • Molloy, M., & Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combinatorics, Probability and Computing, 7(03), 295–305.

    Article  Google Scholar 

  • Moss, J., & Elias, B. (2010). Information networks in intensive care: a network analysis of information exchange patterns. In AMIA annual symposium proceedings, (Vol. 2010, pp. 522–526): American medical informatics association.

  • Newman, M. E., Watts, D. J., & Strogatz, S. H. (2002). Random graph models of social networks. Proceedings of the National Academy of Sciences, 99(suppl 1), 2566–2572.

    Article  Google Scholar 

  • Orbach, Y., & Fruchter, G. E. (2014). Predicting product life cycle patterns. Marketing Letters, 25(1), 37–52.

    Article  Google Scholar 

  • Sen, A., Dacin, P. A., & Pattichis, C. (2006). Current trends in web data analysis. Communications of the ACM, 49(11), 85–91.

    Article  Google Scholar 

  • Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23(4), 433–441.

    Article  Google Scholar 

  • Simon, H. A. (1955). On a class of skew distribution functions. Oxford University Press on behalf of Biometrika Trust. doi:10.2307/2333389.

  • Steinfield, C., Ellison, N. B., & Lampe, C. (2008). Social capital, self-esteem, and use of online social network sites: a longitudinal analysis. Journal of Applied Developmental Psychology, 29(6), 434–445.

    Article  Google Scholar 

  • Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276.

    Article  Google Scholar 

  • van Mierlo, T. (2014). The 1% rule in four digital health social networks: an observational study. Journal of Medical Internet Research, 16(2).

  • Wang, Y., Zeng, D., Zhu, B., Zheng, X., & Wang, F. (2012). Patterns of news dissemination through online news media: a case study in China. Information Systems Frontiers, 1–14.

  • Wasserman, S. & Faust K. (1994). Social network analysis: Methods and applications (Vol. 8): Cambridge: Cambridge University Press.

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • Wijnhoven, F., & Kraaijenbrink, J. (2008). Product-oriented design theory for digital information services: a literature review. Internet research, 18(1), 93–120.

    Article  Google Scholar 

  • Zeng, D., Chen, H., Lusch, R., & Li, S.-H. (2010). Social media analytics and intelligence. Intelligent Systems, IEEE, 25(6), 13–16.

    Article  Google Scholar 

Download references

Acknowledgements

The authors were supported by Kadir Has Scientific Research Project Grant 2014-BAP-05.

The authors are grateful to the CEO of Doktorsitesi.com for his valuable comments and providing data. Complete mathematical specifications and data are available from the corresponding author on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet N. Aydin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, M.N., Perdahci, N.Z. Dynamic network analysis of online interactive platform. Inf Syst Front 21, 229–240 (2019). https://doi.org/10.1007/s10796-017-9740-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-017-9740-8

Keywords

Navigation