Skip to main content
Log in

Repeatability and reliability of semi-automated anterior segment-optical coherence tomography imaging compared to manual analysis in normal and keratoconus eyes

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the repeatability and reliability of semi-automated EyeMark Python program measurements compared to manual ImageJ image processing of anterior segment-optical coherence tomography (AS-OCT) structures in healthy and keratoconus eyes.

Methods

Heidelberg AS-OCT was used to image 25 eyes from 14 healthy subjects and 25 eyes from 15 subjects with keratoconus between the ages of 20 and 80 years, collected prospectively, in this observational case–control study. Visual axis scan containing vertical fixation light beam was selected from the 15-line AS-OCT scan raster. Central corneal thickness (CCT), anterior corneal radius of curvature (ACRC), posterior corneal radius of curvature (PCRC), and truncated anterior vault (TAV) were measured using ImageJ software and the EyeMark Python program. MedCalc and R were used to calculate the intraclass correlation coefficient (ICC) and generate Bland–Altman plots (BAP).

Results

When comparing the measurements of CCT, ACRC, PCRC, and TAV between manual ImageJ analysis and the EyeMark Python program, ICC values were consistently greater than 0.9, indicating excellent agreement. BAPs comparing the ImageJ and Python measurements of anterior segment structures show no systematic proportional bias and the average differences were near zero and within 95% of the limits of agreement.

Conclusions

Semi-automated tools may provide the necessary efficiency for point-of-care quantitative corneal analysis of raw AS-OCT images. The semi-automated EyeMark Python program offers a repeatable and reliable tool compared to manual ImageJ analysis for measuring anterior segment structures from AS-OCT images among individuals with keratoconus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ (2014) The pathogenesis of keratoconus. Eye (Lond) 28:189–195. https://doi.org/10.1038/EYE.2013.278

    Article  CAS  PubMed  Google Scholar 

  2. Mas Tur V, MacGregor C, Jayaswal R et al (2017) A review of keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol 62:770–783. https://doi.org/10.1016/J.SURVOPHTHAL.2017.06.009

    Article  PubMed  Google Scholar 

  3. Shi Y (2016) Strategies for improving the early diagnosis of keratoconus. Clin Optom 8:13. https://doi.org/10.2147/OPTO.S63486

    Article  Google Scholar 

  4. Fernández Pérez J, Valero Marcos A, Martínez Peña FJ (2014) Early diagnosis of keratoconus: what difference is it making? Br J Ophthalmol 98:1465. https://doi.org/10.1136/BJOPHTHALMOL-2014-305120

    Article  PubMed  Google Scholar 

  5. Zhang X, Munir SZ, Sami Karim SA, Munir WM (2021) A review of imaging modalities for detecting early keratoconus. Eye (Lond) 35:173–187. https://doi.org/10.1038/S41433-020-1039-1

    Article  PubMed  Google Scholar 

  6. Grewal DS, Brar GS, Grewal SPS (2010) Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry. J Cataract Refract Surg 36:954–964. https://doi.org/10.1016/J.JCRS.2009.12.033

    Article  PubMed  Google Scholar 

  7. Müller M, Dahmen G, Pörksen E et al (2006) Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg 32:1803–1808. https://doi.org/10.1016/J.JCRS.2006.07.014

    Article  PubMed  Google Scholar 

  8. Gokul A, Vellara HR, Patel D (2018) Advanced anterior segment imaging in keratoconus: a review. Clin Exp Ophthalmol 46:122–132. https://doi.org/10.1111/CEO.13108

    Article  PubMed  Google Scholar 

  9. National Institute of Health ImageJ User Guide - IJ 1.46r | Process Menu. https://imagej.nih.gov/ij/docs/guide/146-29.html. Accessed 6 Jun 2022

  10. Sakata LM, Lavanya R, Friedman DS et al (2008) Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol 126:181–185. https://doi.org/10.1001/ARCHOPHTHALMOL.2007.46

    Article  PubMed  Google Scholar 

  11. Yeung D, Sorbara L (2018) Estimation of apical axial curvature using anterior segment optical coherent tomography compared to corneal topography. Cont Lens Anterior Eye 41:S56. https://doi.org/10.1016/J.CLAE.2018.03.043

    Article  Google Scholar 

  12. Seager FE, Wang J, Arora KS, Quigley HA (2014) The effect of scleral spur identification methods on structural measurements by anterior segment optical coherence tomography. J Glaucoma. https://doi.org/10.1097/IJG.0B013E31829E55AE

    Article  PubMed  Google Scholar 

  13. van Rossum G, Drake FL (2009) Python 3 reference manual. CreateSpace, Scotts Valley

    Google Scholar 

  14. Alexander JL, Maripudi S, Kannan K et al (2021) Semiautomated assessment of anterior segment structures in pediatric glaucoma using quantitative ultrasound biomicroscopy. J Glaucoma 30:E222–E226. https://doi.org/10.1097/IJG.0000000000001809

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fu H, Baskaran M, Xu Y et al (2019) A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am J Ophthalmol 203:37–45. https://doi.org/10.1016/J.AJO.2019.02.028

    Article  PubMed  Google Scholar 

  16. dos Santos VA, Schmetterer L, Stegmann H et al (2019) CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express 10:622. https://doi.org/10.1364/BOE.10.000622

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schlegel Z, Hoang-Xuan T, Gatinel D (2008) Comparison of and correlation between anterior and posterior corneal elevation maps in normal eyes and keratoconus-suspect eyes. J Cataract Refract Surg 34:789–795. https://doi.org/10.1016/J.JCRS.2007.12.036

    Article  PubMed  Google Scholar 

  18. Kitazawa K, Itoi M, Yokota I et al (2018) Involvement of anterior and posterior corneal surface area imbalance in the pathological change of keratoconus. Sci Rep 8:1–7. https://doi.org/10.1038/s41598-018-33490-z

    Article  CAS  Google Scholar 

  19. Reinstein DZ, Archer TJ, Gobbe M (2009) Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg 25:604–610. https://doi.org/10.3928/1081597X-20090610-06

    Article  PubMed  Google Scholar 

  20. Spoerl E, Zubaty V, Raiskup-Wolf F, Pillunat LE (2007) Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia. Br J Ophthalmol 91:1547. https://doi.org/10.1136/BJO.2007.124388

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aydin E, Demir HD, Demirturk F et al (2007) Corneal topographic changes in premenopausal and postmenopausal women. BMC Ophthalmol 7:1–4. https://doi.org/10.1186/1471-2415-7-9/FIGURES/1

    Article  Google Scholar 

  22. Ang M, Baskaran M, Werkmeister RM et al (2018) Anterior segment optical coherence tomography. Prog Retin Eye Res 66:132–156. https://doi.org/10.1016/J.PRETEYERES.2018.04.002

    Article  PubMed  Google Scholar 

  23. R Core Team (2021) R: A language and environment for statistical computing

  24. Martin Bland J, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310. https://doi.org/10.1016/S0140-6736(86)90837-8

    Article  Google Scholar 

  25. Wickham H (2009) ggplot2. ggplot2. https://doi.org/10.1007/978-0-387-98141-3

  26. Lin AN, Mohammed ISK, Munir WM et al (2021) Inter-rater reliability and repeatability of manual anterior segment optical coherence tomography image grading in keratoconus. Eye Contact Lens 47:494–499. https://doi.org/10.1097/ICL.0000000000000818

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mohammed ISK, Tran S, Toledo-Espiett LA, Munir WM (2022) The detection of keratoconus using novel metrics derived by anterior segment optical coherence tomography. Int Ophthalmol. https://doi.org/10.1007/S10792-021-02210-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yousefi S, Yousefi E, Takahashi H et al (2018) Keratoconus severity identification using unsupervised machine learning. PLoS ONE 13:e0205998. https://doi.org/10.1371/JOURNAL.PONE.0205998

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kamiya K, Ayatsuka Y, Kato Y et al (2019) Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open 9:31313. https://doi.org/10.1136/BMJOPEN-2019-031313

    Article  Google Scholar 

  30. Kato N, Masumoto H, Tanabe M et al (2021) Predicting keratoconus progression and need for corneal crosslinking using deep learning. J Clin Med 10:1–9. https://doi.org/10.3390/JCM10040844

    Article  Google Scholar 

  31. Shi C, Wang M, Zhu T et al (2020) Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities. Eye Vis 7:1–12. https://doi.org/10.1186/S40662-020-00213-3/TABLES/5

    Article  Google Scholar 

Download references

Funding

This research was funded in part by the Program for Research Initiated by Students and Mentors (PRISM), University of Maryland School of Medicine Office of Student Research.

This work was also supported by the University of Maryland, Baltimore, Institute for Clinical & Translational Research (ICTR) and the National Center for Advancing Translational Sciences (NCATS) Clinical Translational Science Award (CTSA) Grant No. IUL1TR003098. Dr. Alexander received funding support from Grant KL2TR003099 and K23EY032525.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design. Material preparation, data collection, and analysis were performed by Anna Lin. Anna Lin prepared Figs. 1, 2 and all tables. Libby Wei prepared supplemental Figs. 1–4. The first draft of the manuscript was written by Anna Lin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Janet L. Alexander.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. All co-authors have seen and agree with the contents of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, A.N., Mohammed, I.S.K., Munir, W.M. et al. Repeatability and reliability of semi-automated anterior segment-optical coherence tomography imaging compared to manual analysis in normal and keratoconus eyes. Int Ophthalmol 43, 5063–5069 (2023). https://doi.org/10.1007/s10792-023-02909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02909-6

Keywords

Navigation