Skip to main content

Advertisement

Log in

Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Due to the inimitable anatomical structure of the eyeball and various physiological barriers, conventional ocular local administration is often complicated by apparent shortcomings, such as limited bioavailability and short drug retention. Thus, developing methods for sustainable, safe and efficient drug delivery to ocular target sites has long been an urgent need. This study briefly summarizes the barriers to ocular drug administration and various ocular drug delivery routes and highlights recent progress in ocular implantable sustained-release drug delivery systems (DDSs) to provide literature evidence for developing novel ocular implants for sustained drug delivery.

Methods

We conducted a comprehensive search of studies on ocular implantable sustained-release DDSs in PubMed and Web of Science using the following keywords: ocular, implantable and drug delivery system. More than 400 papers were extracted. Publications focused on sustained and controlled drug release were primarily considered. Experimental articles involving DDSs that cannot be implanted into the eye through surgeries and cannot be inserted into ocular tissues in solid form were excluded. Approximately 143 publications were reviewed to summarize the most current information on the subject.

Results

In recent years, numerous ocular sustained-release DDSs using lipids, nanoparticles and hydrogels as carriers have emerged. With unique properties and systematic design, ocular implantable sustained-release DDSs are able to continuously maintain drug release, effectively sustain the therapeutic concentration in target tissues, and substantially enhance the therapeutic efficacy. Nevertheless, few ocular implantable sustained-release DDSs have been available in clinical use.

Conclusions

Ocular implantable sustained-release DDSs have become a new focus in the field of ocular drug development through unique designs and improvements in the materials of drug carriers, administration methods and dosage forms. With more ocular implantable sustained-release DDSs being commercialized, ocular therapeutics may be revolutionized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

BRB:

Blood retinal barrier

CNV:

Choroidal neovascularization

DDS:

Drug delivery system

Dex:

Dexamethasone

DR:

Diabetic retinopathy

FA:

Fluocinolone acetonide

HA:

Hyaluronic acid

ILM:

Inner limiting membrane

MN:

Microneedle

MXF:

Oxifloxacin

PDMS:

Polydimethylsiloxane

PEGDM:

Poly (ethylene glycol) dimethacrylate

pEOEMA:

Poly(2-ethoxyethyl methacrylate)

P-gp:

P-glycoprotein

pHEMA:

Poly(2-hydroxyethyl methacrylate)

PLC:

Poly(D, L-lactide-co-ε-caprolactone)

PLGA:

Polylactic-co-glycolic acid

PVA:

Poly (vinyl alcohol)

Rb:

Retinoblastoma

RPE:

Retinal pigment epithelium

TA:

Triamcinolone acetonide

TEGDM:

Tri (ethylene glycol) dimethacrylate

TPT:

Topotecan

UNO:

Unoprostone

URD:

UNO release device

References

  1. Nayak K, Misra M (2018) A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 107:1564–1582. https://doi.org/10.1016/j.biopha.2018.08.138

    Article  CAS  PubMed  Google Scholar 

  2. Rafiei F, Tabesh H, Farzad F (2020) Sustained subconjunctival drug delivery systems: current trends and future perspectives. Int Ophthalmol 40(9):2385–2401. https://doi.org/10.1007/s10792-020-01391-8

    Article  PubMed  Google Scholar 

  3. Joseph RR, Venkatraman SS (2017) Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine Lond 12(6):683–702. https://doi.org/10.2217/nnm-2016-0379

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigues GA, Lutz D, Shen J, Yuan X, Shen H, Cunningham J, Rivers HM (2018) Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res 35(12):245. https://doi.org/10.1007/s11095-018-2519-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burhan AM, Klahan B, Cummins W, Andrés-Guerrero V, Byrne ME, O’Reilly NJ, Chauhan A, Fitzhenry L, Hughes H (2021) Posterior Segment ophthalmic drug delivery: role of Muco-adhesion with a special focus on chitosan. Pharmaceutics 13(10):1685. https://doi.org/10.3390/pharmaceutics13101685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A (2017) Principles of pharmacology in the eye. Br J Pharmacol 174(23):4205–4223. https://doi.org/10.1111/bph.14024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim HM, Woo SJ (2021) Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics 13(1):108. https://doi.org/10.3390/pharmaceutics13010108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gote V, Sikder S, Sicotte J, Pal D (2019) Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther 370(3):602–624. https://doi.org/10.1124/jpet.119.256933

    Article  CAS  PubMed  Google Scholar 

  9. Löscher M, Seiz C, Hurst J, Schnichels S (2022) Topical drug delivery to the posterior segment of the eye. Pharmaceutics 14(1):134. https://doi.org/10.3390/pharmaceutics14010134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mittal S, Miranda O (2018) Recent advancemnts in biodegradable ocular implants. Curr Drug Deliv 15(2):144–154. https://doi.org/10.2174/1567201814666170508104254

    Article  CAS  PubMed  Google Scholar 

  11. Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW (2021) Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int J Pharm 607:120924. https://doi.org/10.1016/j.ijpharm.2021.120924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gote V, Ansong M, Pal D (2020) Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 16(10):885–906. https://doi.org/10.1080/17425255.2020.1803278

    Article  CAS  PubMed  Google Scholar 

  13. Sripetch S, Loftsson T (2021) Topical drug delivery to the posterior segment of the eye: thermodynamic considerations. Int J Pharm 597:120332. https://doi.org/10.1016/j.ijpharm.2021.120332

    Article  CAS  PubMed  Google Scholar 

  14. Huang D, Chen YS, Rupenthal ID (2018) Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 126:96–112. https://doi.org/10.1016/j.addr.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  15. Li SK, Hao J (2018) Transscleral passive and iontophoretic transport: theory and analysis. Expert Opin Drug Deliv 15(3):283–299. https://doi.org/10.1080/17425247.2018.1406918

    Article  CAS  PubMed  Google Scholar 

  16. Kim YH, Oh J (2021) Choroidal thickness profile in chorioretinal diseases: beyond the macula. Front Med Lausanne 8:797428. https://doi.org/10.3389/fmed.2021.797428

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peynshaert K, Devoldere J, De Smedt SC, Remaut K (2018) In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev 126:44–57. https://doi.org/10.1016/j.addr.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  18. Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A (2017) Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 57:134–185. https://doi.org/10.1016/j.preteyeres.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Loftsson T (2022) Topical drug delivery to the retina: obstacles and routes to success. Expert Opin Drug Deliv 19(1):9–21. https://doi.org/10.1080/17425247.2022.2017878

    Article  CAS  PubMed  Google Scholar 

  20. Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, Fernández-Ferreiro A, Otero-Espinar FJ (2020) Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics 12(3):269. https://doi.org/10.3390/pharmaceutics12030269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavan B, Dalpiaz A (2018) Retinal pigment epithelial cells as a therapeutic tool and target against retinopathies. Drug Discov Today 23(9):1672–1679. https://doi.org/10.1016/j.drudis.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  22. Madni A, Rahem MA, Tahir N, Sarfraz M, Jabar A, Rehman M, Kashif PM, Badshah SF, Khan KU, Santos HA (2017) Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm 530(1–2):326–345. https://doi.org/10.1016/j.ijpharm.2017.07.065

    Article  CAS  PubMed  Google Scholar 

  23. Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S (2022) Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 8(2):82. https://doi.org/10.3390/gels8020082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yellepeddi VK, Palakurthi S (2016) Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther 32(2):67–82. https://doi.org/10.1089/jop.2015.0047

    Article  CAS  PubMed  Google Scholar 

  25. Vellonen KS, Hellinen L, Mannermaa E, Ruponen M, Urtti A, Kidron H (2018) Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev 126:3–22. https://doi.org/10.1016/j.addr.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  26. Agban Y, Thakur SS, Mugisho OO, Rupenthal ID (2019) Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today 24(8):1458–1469. https://doi.org/10.1016/j.drudis.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  27. Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, Del Amo EM (2018) Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev 126:23–43. https://doi.org/10.1016/j.addr.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  28. Teng YN, Chen LH, Chen Kui Vavulengan YH (2022) Repositioning application of polyoxyethylene (20) sorbitan monooleate on ocular drug resistance and cancer multi-drug resistance by inhibiting the ATPase activity of human multidrug resistance protein 1 and P-glycoprotein. Eur J Pharm Biopharm 170:77–90. https://doi.org/10.1016/j.ejpb.2021.12.002

    Article  CAS  PubMed  Google Scholar 

  29. Janga KY, Tatke A, Shukla S, Lamichhane SP, Avula B, Wang X, Jablonski MM, Khan IA, Majumdar S (2018) Retina compatible interactions and effective modulation of blood ocular barrier P-gp activity by third-generation inhibitors improve the ocular penetration of loperamide. J Pharm Sci 107(8):2128–2135. https://doi.org/10.1177/1747493018778713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Djebli N, Khier S, Griguer F, Coutant AL, Tavernier A, Fabre G, Leriche C, Fabre D (2017) Ocular drug distribution after topical administration: population pharmacokinetic model in rabbits. Eur J Drug Metab Pharmacokinet 42(1):59–68. https://doi.org/10.1007/s13318-016-0319-4

    Article  CAS  PubMed  Google Scholar 

  31. Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS (2018) Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 10(1):28. https://doi.org/10.3390/pharmaceutics10010028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durgun ME, Güngör S, Özsoy Y (2020) Micelles: promising ocular drug carriers for anterior and posterior segment diseases. J Ocul Pharmacol Ther 36(6):323–341. https://doi.org/10.1089/jop.2019.0109

    Article  CAS  PubMed  Google Scholar 

  33. Alami-Milani M, Zakeri-Milani P, Valizadeh H, Fathi M, Salatin S, Salehi R, Jelvehgari M (2020) PLA-PCL-PEG-PCL-PLA based micelles for improving the ocular permeability of dexamethasone: development, characterization, and in vitro evaluation. Pharm Dev Technol 25(6):704–719. https://doi.org/10.1080/10837450.2020.1733606

    Article  CAS  PubMed  Google Scholar 

  34. Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Jelvehgari M (2018) Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran J Basic Med Sci 21(2):153–164. https://doi.org/10.22038/IJBMS.2017.26590.6513

    Article  PubMed  PubMed Central  Google Scholar 

  35. Barbosa-Alfaro D, Andrés-Guerrero V, Fernandez-Bueno I, García-Gutiérrez MT, Gil-Alegre E, Molina-Martínez IT, Pastor-Jimeno JC, Herrero-Vanrell R, Bravo-Osuna I (2021) Dexamethasone PLGA microspheres for sub-tenon administration: influence of sterilization and tolerance studies. Pharmaceutics 13(2):228. https://doi.org/10.3390/pharmaceutics13020228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindholm JM, Taipale C, Ylinen P, Tuuminen R (2020) Perioperative subconjunctival triamcinolone acetonide injection for prevention of inflammation and macular oedema after cataract surgery. ACTA Ophthalmol 98(1):36–42. https://doi.org/10.1111/aos.14175

    Article  CAS  PubMed  Google Scholar 

  37. Yavuz B, Bozdağ Pehlivan S, Kaffashi A, Çalamak S, Ulubayram K, Palaska E, Çakmak HB, Ünlü N (2016) In vivo tissue distribution and efficacy studies for cyclosporin a loaded nano-decorated subconjunctival implants. Drug Deliv 23(9):3279–3284. https://doi.org/10.3109/10717544.2016.1172368

    Article  CAS  PubMed  Google Scholar 

  38. Wang R, Gao Y, Liu A, Zhai G (2021) A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target 29(7):687–702. https://doi.org/10.1080/1061186X.2021.1878366

    Article  CAS  PubMed  Google Scholar 

  39. Huang Z, Yang W, Zong Y, Qiu S, Chen X, Sun X, Zhou Y, Xie Z, Gao Q (2016) A study of the dexamethasone sodium phosphate release properties from a periocular capsular drug delivery system. Drug Deliv 23(3):849–857. https://doi.org/10.3109/10717544.2014.919543

    Article  CAS  PubMed  Google Scholar 

  40. Huang X, Peng M, Yang Y, Duan Y, Li K, Liu S, Ye C, Lin D (2017) Dexamethasone distribution characteristic following controllable continuous sub-tenon drug delivery in rabbit. Drug Deliv 24(1):818–824. https://doi.org/10.1080/10717544.2017.1324531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang YH, Hsu WC, Hsieh YT (2021) Anterior migration of triamcinolone acetonide after posterior subtenon injection for macular edema predisposes to intraocular pressure elevation. Curr Eye Res 46(5):689–693. https://doi.org/10.1080/02713683.2020.1826979

    Article  CAS  PubMed  Google Scholar 

  42. Chiang B, Jung JH, Prausnitz MR (2018) The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev 126:58–66. https://doi.org/10.1016/j.addr.2018.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sher I, Goldberg Z, Bubis E, Barak Y, Rotenstreich Y (2021) Suprachoroidal delivery of bevacizumab in rabbit in vivo eyes: Rapid distribution throughout the posterior segment. Eur J Pharm Biopharm 169:200–210. https://doi.org/10.1016/j.ejpb.2021.10.003

    Article  CAS  PubMed  Google Scholar 

  44. Hanif J, Iqbal K, Perveen F, Arif A, Iqbal RN, Jameel F, Hanif K, Seemab A, Khan AY, Ahmed M (2021) Safety and efficacy of suprachoroidal injection of triamcinolone in treating macular edema secondary to noninfectious uveitis. Cureus 13(11):e20038. https://doi.org/10.7759/cureus.20038

    Article  PubMed  PubMed Central  Google Scholar 

  45. Iovino C, Mastropasqua R, Lupidi M, Bacherini D, Pellegrini M, Bernabei F, Borrelli E, Sacconi R, Carnevali A, D’Aloisio R, Cerquaglia A, Finocchio L, Govetto A, Erba S, Triolo G, Di Zazzo A, Forlini M, Vagge A, Giannaccare G (2020) Intravitreal dexamethasone implant as a sustained release drug delivery device for the treatment of ocular diseases: a comprehensive review of the literature. Pharmaceutics 12(8):703. https://doi.org/10.3390/pharmaceutics12080703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mezu-Ndubuisi OJ, Wang Y, Schoephoerster J, Falero-Perez J, Zaitoun IS, Sheibani N, Gong S (2019) Intravitreal delivery of VEGF-A165-loaded PLGA microparticles reduces retinal vaso-obliteration in an in vivo mouse model of retinopathy of prematurity. Curr Eye Res 44(3):275–286. https://doi.org/10.1080/02713683.2018.1542736

    Article  CAS  PubMed  Google Scholar 

  47. Bisht R, Jaiswal JK, Chen YS, Jin J, Rupenthal ID (2016) Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv 13(7):953–962. https://doi.org/10.1517/17425247.2016.1163334

    Article  CAS  PubMed  Google Scholar 

  48. Naguib S, Bernardo-Colón A, Rex TS (2021) Intravitreal injection worsens outcomes in a mouse model of indirect traumatic optic neuropathy from closed globe injury. Exp Eye Res 202:108369. https://doi.org/10.1016/j.exer.2020.108369

    Article  CAS  PubMed  Google Scholar 

  49. Urban B, Szwabowicz M, Bakunowicz-Łazarczyk A (2020) Effect of repeated intravitreal ranibizumab and aflibercept injections on the cornea in patients with age-related macular degeneration. J Ophthalmol 2020:4928905. https://doi.org/10.1155/2020/4928905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, Baboota S (2019) Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 13(4):246–254. https://doi.org/10.2174/1872211314666191224115211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nirbhavane P, Sharma G, Singh B, Begum G, Jones MC, Rauz S, Vincent R, Denniston AK, Hill LJ, Katare OP (2020) Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf B Biointerfaces 190:110902. https://doi.org/10.1016/j.colsurfb.2020.110902

    Article  CAS  PubMed  Google Scholar 

  52. Srinivasarao DA, Lohiya G, Katti DS (2019) Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(4):e1548. https://doi.org/10.1002/wnan.1548

    Article  PubMed  Google Scholar 

  53. Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N (2021) Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 22(22):12368. https://doi.org/10.3390/ijms222212368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu A, Shi H, Liu H, Bao Z, Dai M, Lin D, Lin D, Xu X, Li X, Wang Y (2020) Mucoadhesive dexamethasone-glycol chitosan nanoparticles for ophthalmic drug delivery. Int J Pharm 575:118943. https://doi.org/10.1016/j.ijpharm.2019.118943

    Article  CAS  PubMed  Google Scholar 

  55. Cooper RC, Yang H (2019) Hydrogel-based ocular drug delivery systems: emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release 306:29–39. https://doi.org/10.1016/j.jconrel.2019.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Egbu R, Brocchini S, Khaw PT, Awwad S (2018) Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur J Pharm Biopharm 124:95–103. https://doi.org/10.1016/j.ejpb.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  57. Kim DJ, Jung MY, Park JH, Pak HJ, Kim M, Chuck RS, Park CY (2021) Moxifloxacin releasing intraocular implant based on a cross-linked hyaluronic acid membrane. Sci Rep 11(1):24115. https://doi.org/10.1038/s41598-021-03605-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C (2021) PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 28(1):1397–1418. https://doi.org/10.1080/10717544.2021.1938756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee K, Song HB, Cho W, Kim JH, Kim JH, Ryu W (2018) Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. ACTA Biomater 80:48–57. https://doi.org/10.1016/j.actbio.2018.09.039

    Article  CAS  PubMed  Google Scholar 

  60. Than A, Liu C, Chang H, Duong PK, Cheung CMG, Xu C, Wang X, Chen P (2018) Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun 9(1):4433. https://doi.org/10.1038/s41467-018-06981-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu YC, Ng XW, Teo EPW, Ang HP, Lwin NC, Chan NSW, Venkatraman SS, Wong TT, Mehta JS (2018) A biodegradable, sustained-released, tacrolimus microfilm drug delivery system for the management of allergic conjunctivitis in a mouse model. Invest Ophthalmol Vis Sci 59(2):675–684. https://doi.org/10.1167/iovs.17-23066

    Article  CAS  PubMed  Google Scholar 

  62. Liu YC, Ng AHC, Ng XW, Yan P, Venkatraman SS, Mehta JS, Wong TT (2017) Evaluation of a sustained-release prednisolone acetate biodegradable subconjunctival implant in a non-human primate model. Transl Vis Sci Technol 6(5):9. https://doi.org/10.1167/tvst.6.5.9

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhou C, Robert MC, Kapoulea V, Lei F, Stagner AM, Jakobiec FA, Dohlman CH, Paschalis EI (2017) Sustained subconjunctival delivery of infliximab protects the cornea and retina following alkali burn to the eye. Invest Ophthalmol Vis Sci 58(1):96–105. https://doi.org/10.1167/iovs.16-20339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nagai N, Saijo S, Song Y, Kaji H, Abe T (2019) A drug refillable device for transscleral sustained drug delivery to the retina. Eur J Pharm Biopharm 136:184–191. https://doi.org/10.1016/j.ejpb.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  65. Zhou C, Singh A, Qian G, Wolkow N, Dohlman CH, Vavvas DG, Chodosh J, Paschalis EI (2020) Microporous drug delivery system for sustained anti-VEGF delivery to the eye. Transl Vis Sci Technol 9(8):5. https://doi.org/10.1167/tvst.9.8.5

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tsuruma K, Tanaka Y, Shimazawa M, Mashima Y, Hara H (2011) Unoprostone reduces oxidative stress- and light-induced retinal cell death, and phagocytotic dysfunction, by activating BK channels. Mol Vis 17:3556–3565

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nagai N, Koyanagi E, Izumida Y, Liu J, Katsuyama A, Kaji H, Nishizawa M, Osumi N, Kondo M, Terasaki H, Mashima Y, Nakazawa T, Abe T (2016) Long-term protection of genetically ablated rabbit retinal degeneration by sustained transscleral unoprostone delivery. Invest Ophthalmol Vis Sci 57(15):6527–6538. https://doi.org/10.1167/iovs.16-20453

    Article  CAS  PubMed  Google Scholar 

  68. Nagai N, Yamada S, Kawasaki J, Koyanagi E, Saijo S, Kaji H, Nishizawa M, Nakazawa T, Abe T (2018) Pharmacokinetic and safety evaluation of a transscleral sustained unoprostone release device in monkey eyes. Invest Ophthalmol Vis Sci 59(2):644–652

    Article  CAS  PubMed  Google Scholar 

  69. Nagai N, Nezhad ZK, Daigaku R, Saijo S, Song Y, Terata K, Hoshi A, Nishizawa M, Nakazawa T, Kaji H, Abe T (2019) Transscleral sustained ranibizumab delivery using an episcleral implantable device: Suppression of laser-induced choroidal neovascularization in rats. Int J Pharm 567:118458. https://doi.org/10.1016/j.ijpharm.2019.118458

    Article  CAS  PubMed  Google Scholar 

  70. Sato Y, Nagai N, Abe T, Kaji H (2019) A multilayered sheet-type device capable of sustained drug release and deployment control. Biomed Microdevices 21(3):60. https://doi.org/10.1007/s10544-019-0411-z

    Article  CAS  PubMed  Google Scholar 

  71. Kojima H, Raut B, Chen LJ, Nagai N, Abe T, Kaji H (2020) A 3D printed self-sustainable cell-encapsulation drug delivery device for periocular transplant-based treatment of retinal degenerative diseases. Micromachines Basel 11(4):436. https://doi.org/10.3390/mi11040436

    Article  PubMed  PubMed Central  Google Scholar 

  72. Munier FL, Beck-Popovic M, Chantada GL, Cobrinik D, Kivelä TT, Lohmann D, Maeder P, Moll AC, Carcaboso AM, Moulin A, Schaiquevich P, Bergin C, Dyson PJ, Houghton S, Puccinelli F, Vial Y, Gaillard MC, Stathopoulos C (2019) Conservative management of retinoblastoma: challenging orthodoxy without compromising the state of metastatic grace Alive, with good vision and no comorbidity. Prog Retin Eye Res 73:100764. https://doi.org/10.1016/j.preteyeres.2019.05.005

    Article  PubMed  Google Scholar 

  73. Fabian ID, Onadim Z, Karaa E, Duncan C, Chowdhury T, Scheimberg I, Ohnuma SI, Reddy MA, Sagoo MS (2018) The management of retinoblastoma. Oncogene 37(12):1551–1560. https://doi.org/10.1038/s41388-017-0050-x

    Article  CAS  PubMed  Google Scholar 

  74. Cocarta AI, Hobzova R, Sirc J, Cerna T, Hrabeta J, Svojgr K, Pochop P, Kodetova M, Jedelska J, Bakowsky U, Uhlik J (2019) Hydrogel implants for transscleral drug delivery for retinoblastoma treatment. Mater Sci Eng C Mater Biol Appl 103:109799. https://doi.org/10.1016/j.msec.2019.109799

    Article  CAS  PubMed  Google Scholar 

  75. Hobzova R, Kodetova M, Pochop P, Uhlik J, Dunovska K, Svojgr K, Hrabeta J, Feriancikova B, Cocarta AI, Sirc J (2021) Hydrogel implants for transscleral diffusion delivery of topotecan: In vivo proof of concept in a rabbit eye model. Int J Pharm 606:120832. https://doi.org/10.1016/j.ijpharm.2021.120832

    Article  CAS  PubMed  Google Scholar 

  76. Covert JC, Thomasy SM, Kado-Fong H, Kon LN, Kass PH, Reilly CM, Lappin MR, Margulies BJ, Maggs DJ (2019) Pilot study of the safety and tolerability of a subconjunctival penciclovir implant in cats experimentally infected with herpesvirus. J Ocul Pharmacol Ther 35(1):38–49. https://doi.org/10.1089/jop.2018.0043

    Article  CAS  PubMed  Google Scholar 

  77. Solano AGR, de Fátima PA, de Faria LGA, Fialho SL, de Oliveira Patricio PS, da Silva-Cunha A, Fulgêncio GO, da Silva GR, Pianetti GA (2018) Etoposide-loaded poly(lactic-co-glycolic acid) intravitreal implants in vitro and in vivo evaluation. AAPS Pharm Sci Tech 19(4):1652–1661. https://doi.org/10.1208/s12249-018-0978-3

    Article  CAS  Google Scholar 

  78. Wang C, Seo SJ, Kim JS, Lee SH, Jeon JK, Kim JW, Kim KH, Kim JK, Park J (2018) Intravitreal implantable magnetic micropump for on-demand VEGFR-targeted drug delivery. J Control Release 283:105–112. https://doi.org/10.1016/j.jconrel.2018.05.030

    Article  CAS  PubMed  Google Scholar 

  79. Iyer S, Radwan AE, Hafezi-Moghadam A, Malyala P, Amiji M (2019) Long-acting intraocular delivery strategies for biological therapy of age-related macular degeneration. J Control Release 296:140–149. https://doi.org/10.1016/j.jconrel.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  80. Leinonen S, Immonen I, Kotaniemi K (2018) Fluocinolone acetonide intravitreal implant (Retisert® ) in the treatment of sight threatening macular oedema of juvenile idiopathic arthritis-related uveitis. Acta Ophthalmol 96(6):648–651. https://doi.org/10.1111/aos.13744

    Article  CAS  PubMed  Google Scholar 

  81. Behar-Cohen F (2019) Recent advances in slow and sustained drug release for retina drug delivery. Expert Opin Drug Deliv 16(7):679–686. https://doi.org/10.1080/17425247.2019.1618829

    Article  PubMed  Google Scholar 

  82. Miguel-Escuder L, Olate-Pérez Á, Sala-Puigdoners A, Moll-Udina A, Figueras-Roca M, Navarro-Angulo MJ, Adán A, Pelegrín L (2021) Intravitreal fluocinolone acetonide implant for the treatment of persistent post-surgical cystoid macular edema in vitrectomized eyes. Eur J Ophthalmol. https://doi.org/10.1177/11206721211046718

    Article  PubMed  Google Scholar 

  83. Cao Y, Samy KE, Bernards DA, Desai TA (2019) Recent advances in intraocular sustained-release drug delivery devices. Drug Discov Today 24(8):1694–1700. https://doi.org/10.1016/j.drudis.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee A, Blair HA (2020) Dexamethasone intracanalicular insert: a review in treating post-surgical ocular pain and inflammation. Drugs 80(11):1101–1108. https://doi.org/10.1007/s40265-020-01344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trivedi RH, Wilson ME (2021) A sustained-release intracanalicular dexamethasone insert (Dextenza) for pediatric cataract surgery. J AAPOS 25(1):43–45. https://doi.org/10.1016/j.jaapos.2020.10.001

    Article  PubMed  Google Scholar 

  86. Shirley M (2020) Bimatoprost implant: first approval. Drugs Aging 37(6):457–462. https://doi.org/10.1007/s40266-020-00769-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kesav NP, Young CEC, Ertel MK, Seibold LK, Kahook MY (2021) Sustained-release drug delivery systems for the treatment of glaucoma. Int J Ophthalmol 14(1):148–159. https://doi.org/10.18240/ijo.2021.01.21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82171053, 81570864), and the Natural Science Foundation of Jilin Province (No. 20200801043GH; No. 20190201083JC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Yun-Yi Cong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guang-Yu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

Yun-Yi Cong, Bin Fan, Zi-Yuan Zhang and Guang-Yu Li declare they have no financial interests.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, YY., Fan, B., Zhang, ZY. et al. Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics. Int Ophthalmol 43, 2575–2588 (2023). https://doi.org/10.1007/s10792-023-02637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02637-x

Keywords

Navigation