Skip to main content

Advertisement

Log in

Posterior segment spectral domain oct in the differential diagnosis of bilateral temporal optic neuropathy and its correlation with visual acuity

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To identify the underlying etiologies and to evaluate the differential diagnostic value of posterior segment spectral domain OCT measurements and their correlation with best-corrected visual acuity (BCVA) in a group of patients with OCT documented bilateral optic neuropathy limited to the temporal quadrants.

Methods

Retrospective study.

Results

We included 61 patients: 35 presented with presumed “classic” acquired mitochondrial optic neuropathy (MON) (18 nutritional, 11 toxic, 6 mixed toxic-nutritional) and 2 with suspected hereditary MON. Nine patients were identified as ‘MON mimickers’ (especially multiple sclerosis), and 4 were found to have a mixed mechanism, while 11 remained undiagnosed. Across all etiologies, the strongest positive relationship between BCVA and tested OCT parameters was with macular GCL (ganglion cell layer) and GCIPL (combined ganglion cell and inner plexiform layer) volumes rather than peripapillary retinal nerve fiber layer (RNFL) thicknesses (all statistically significant). There was an inverse relationship between BCVA and inner nuclear layer (INL) volumes, with significant differences for BCVA and all tested OCT parameters between eyes with and without INL microcystoid lesions. OCT (absolute values and intereye differences) was not helpful in distinguishing between presumed acquired mitochondrial disease and patients with multiple sclerosis without optic neuritis. However, significantly greater intereye differences in global RNFL and inner plexiform layer and GCIPL volumes were found in patients with a previous history of unilateral optic neuritis.

Conclusions

The strongest positive relationship with BCVA was found for macular GCL and GCIPL volumes. OCT could not differentiate between acquired mitochondrial disease and multiple sclerosis without optic neuritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang MY, Sadun AA (2013) Drug-related mitochondrial optic neuropathies. J Neuroophthalmol 33:172–178

    Article  CAS  PubMed  Google Scholar 

  2. Pilz YL, Bass SJ, Sherman J (2017) A review of mitochondrial optic neuropathies: from inherited to acquired forms. J Optom 10(4):205–214

    Article  PubMed  Google Scholar 

  3. Petzold A, Balcer LJ, Calabresi PA et al (2017) Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 16:797–812

    Article  PubMed  Google Scholar 

  4. Oertel FC, Zimmermann HG, Brandt AU, Paul F (2019) Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother 19:31–43

    Article  CAS  PubMed  Google Scholar 

  5. Davion JB, Lopes R, Drumez É et al (2020) Asymptomatic optic nerve lesions: an underestimated cause of silent retinal atrophy in MS. Neurology 94(23):e2468–e2478

    Article  CAS  PubMed  Google Scholar 

  6. Barboni P, Savini G, Valentino ML et al (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in leber’s hereditary optic neuropathy. Ophthalmology 112:120–126

    Article  PubMed  Google Scholar 

  7. Barboni P, Carbonelli M, Savini G et al (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fibre layer by optical coherence tomography. Ophthalmology 117:623–627

    Article  PubMed  Google Scholar 

  8. Han J, Byun MK, Lee J et al (2015) Longitudinal analysis of retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 253(12):2293–2299

    Article  CAS  PubMed  Google Scholar 

  9. Burkholder BM, Osborne B, Loguidice MJ et al (2009) Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 66:1366–1372

    Article  PubMed  Google Scholar 

  10. Gelfand JM, Nolan R, Schwartz DM et al (2012) Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135:1786–1793

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kessel L, Hamann S, Wegener M, Tong J, Fraser CL (2018) Microcystic macular oedema in optic neuropathy: case series and literature review. Clin Exp Ophthalmol 46(9):1075–1086

    Article  PubMed  Google Scholar 

  12. Abegg M, Dysli M, Wolf S, Kowal J, Dufour P, Zinkernagel M (2014) Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121:142–149

    Article  PubMed  Google Scholar 

  13. Wolff B, Azar G, Vasseur V, Sahel JA, Vignal C, Mauget-Faysse M (2014) Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study. J Ophthalmol 2014:395189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pott JW, de Vries-Knoppert WA, Petzold A (2016) The prevalence of microcystic macular changes on optical coherence tomography of the macular region in optic nerve atrophy of non-neuritis origin: a prospective study. Br J Ophthalmol 100:216–221

    Article  CAS  PubMed  Google Scholar 

  15. Hood DC, Kardon RH (2007) A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 26(6):688–710

    Article  PubMed  PubMed Central  Google Scholar 

  16. Suda K, Akagi T, Nakanishi H et al (2018) Evaluation of structure-function relationships in longitudinal changes of glaucoma using the spectralis oct follow-up mode. Sci Rep 8(1):17158

    Article  PubMed  PubMed Central  Google Scholar 

  17. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815

    Article  CAS  PubMed  Google Scholar 

  18. Nakanishi H et al (2016) Clustering of combined 24–2 and 10–2 visual field grids and their relationship with circumpapillary retinal nerve fiber layer thickness. Investig Ophthalmol Vis Sci 57:3203–3210

    Article  CAS  Google Scholar 

  19. Kim JH, Lee HS, Kim NR, Seong GJ, Kim CY (2014) Relationship between visual acuity and retinal structures measured by spectral domain optical coherence tomography in patients with open-angle glaucoma. Investig Ophthalmol Vis Sci 55(8):4801–4811

    Article  CAS  Google Scholar 

  20. Soltan-Sanjari M, Parvaresh MM, Maleki A, Ghasemi-Falavarjani K, Bakhtiari P (2008) Correlation between retinal nerve fiber layer thickness by optical coherence tomography and perimetric parameters in optic atrophy. J Ophthalmic Vis Res 3(2):91–94

    PubMed  PubMed Central  Google Scholar 

  21. Rebolleda G, Sánchez-Sánchez C, González-López JJ, Contreras I, Muñoz-Negrete FJ (2015) Papillomacular bundle and inner retinal thicknesses correlate with visual acuity in nonarteritic anterior ischemic optic neuropathy. Investig Ophthalmol Vis Sci 56(2):682–692

    Article  Google Scholar 

  22. Park JY, Choi J, Oh WH, Kim JS (2016) Influence of RNFL thickness on visual acuity and visual field in bilateral temporal optic atrophy. J Korean Ophthalmol Soc 57(6):969–976

    Article  Google Scholar 

  23. Kim BG, Park JY, Oh WH, Choi J (2020) Retinal ganglion cell layer thicknesses and visual functions in patients with bilateral temporal optic atrophy. J Korean Ophthalmol Soc 61(1):92–100

    Article  Google Scholar 

  24. Heidelberg Engineering GmbH (2016) Spectralis HRA + OCT User manual software version 6.5 Articl No. 97290–011 INT.AE 16. Heidelberg

  25. Ctori I, Huntjens B (2015) Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS ONE 10(6):e0129005

    Article  PubMed  PubMed Central  Google Scholar 

  26. Atan D (2020) Challenges and opportunities in the diagnosis of nutritional optic neuropathy. Expert Rev Ophthalmol 15(2):67–70

    Article  CAS  Google Scholar 

  27. Kardon RH (2011) Role of the macular optical coherence tomography scan in neuro-ophthalmology. J Neuroophthalmol 31(4):353–361

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chan NCY, Chan CKM (2018) The role of optical coherence tomography in the acute management of neuro-ophthalmic diseases. Asia Pac J Ophthalmol (Phila) 7(4):265–270

    Google Scholar 

  29. Tsai RK, Lee YH (1997) Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther 13(5):473–477

    Article  CAS  PubMed  Google Scholar 

  30. Beck RW, Cleary PA, Backlund JC (1994) The course of visual recovery after optic neuritis. Experience of the optic neuritis treatment trial. Ophthalmology 101:1771–1778

    Article  CAS  PubMed  Google Scholar 

  31. Takada R, Takagi M, Oshima A, Miki A, Usui T, Hasegawa S, Abe H (2005) Delayed visual recovery from severe ethambutol optic neuropathy in two patients with atypical mycobacterium infection. Neuro Ophthalmology 29:187–193

    Article  Google Scholar 

  32. Lamirel C, Newman NJ, Biousse V (2010) Optical coherence tomography (OCT) in optic neuritis and multiple sclerosis. Rev Neurol (Paris) 166(12):978–986

    Article  CAS  Google Scholar 

  33. Pro MJ, Pons ME, Liebmann JM et al (2006) Imaging of the optic disc and retinal nerve fiber layer in acute optic neuritis. J Neurol Sci 250(1–2):114–119

    Article  PubMed  Google Scholar 

  34. Barboni P, Carbonelli M, Savini G et al (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 117:623–627

    Article  PubMed  Google Scholar 

  35. Tieger MG, Hedges TR III, Ho J et al (2017) Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuro Ophthalmol 37(1):7–12

    Article  Google Scholar 

  36. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig Ophthalmol Vis Sci 41(3):741–748

    CAS  Google Scholar 

  37. Nieves-Moreno M, Martínez-de-la-Casa JM, Cifuentes-Canorea P et al (2017) Normative database for separate inner retinal layers thickness using spectral domain optical coherence tomography in Caucasian population. PLoS ONE 12(7):e0180450

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nolan-Kenney RC, Liu M, Akhand O et al (2019) Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study. Ann Neurol 85(5):618–629

    Article  PubMed  Google Scholar 

  39. Coric D, Balk LJ, Uitdehaag BMJ, Petzold A (2017) Diagnostic accuracy of optical coherence tomography inter-eye percentage difference for optic neuritis in multiple sclerosis. Eur J Neurol 24(12):1479–1484

    Article  CAS  PubMed  Google Scholar 

  40. Sigler EJ (2014) Microcysts in the inner nuclear layer, a nonspecific SD-OCT sign of cystoid macular edema. Investig Ophthalmol Vis Sci 55(5):3282–3284

    Article  Google Scholar 

  41. Jefferis JM, Hickman SJ (2019) Treatment and outcomes in nutritional optic neuropathy. Curr Treat Options Neurol 21(1):5. https://doi.org/10.1007/s11940-019-0542-9

    Article  PubMed  Google Scholar 

  42. Realini T, Zangwill LM, Flanagan JG et al (2015) Normative databases for imaging instrumentation. J Glaucoma 24(6):480–483

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kashani AH, Zimmer-Galler IE, Shah SM et al (2010) Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol 149(3):496-502.e1

    Article  PubMed  Google Scholar 

  44. Kelty PJ, Payne JF, Trivedi RH, Kelty J, Bowie EM, Burger BM (2008) Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Investig Ophthalmol Vis Sci 49(6):2668–2672

    Article  Google Scholar 

  45. Khawaja AP, Chua S, Hysi PG et al (2020) Comparison of associations with different macular inner retinal thickness parameters in a large cohort: the uk biobank. Ophthalmology 127(1):62–71

    Article  PubMed  Google Scholar 

  46. Hu H, Jiang H, Gameiro GR, Hernandez J, Delgado S, Wang J (2019) Focal Thickness Reduction of the Ganglion Cell-Inner Plexiform Layer Best Discriminates Prior Optic Neuritis in Patients With Multiple Sclerosis. Invest Ophthalmol Vis Sci 60(13):4257–4269

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Buelens.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to report.

Ethical approval

The retrospective study was approved by the Ethics Committee of both hospitals (CHU St Pierre and Brugmann, Brussels, Belgium) and followed the guidelines from the Helsinki declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Preliminary) results were presented as an e- poster during the 2020 virtual Ophthalmologica Belgica Congress in Brussels.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 429 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buelens, T., Fils, JF. & Willermain, F. Posterior segment spectral domain oct in the differential diagnosis of bilateral temporal optic neuropathy and its correlation with visual acuity. Int Ophthalmol 42, 3877–3889 (2022). https://doi.org/10.1007/s10792-022-02408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02408-0

Keywords

Navigation