Skip to main content
Log in

Evaluation of central corneal epithelial thickness with anterior segment OCT in patients with type 2 diabetes mellitus

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

This study aimed to evaluate the central corneal thickness (CCT) and central corneal epithelial thickness (CCET) in patients with Type 2 diabetes mellitus (DM), and the effect of the duration of diabetes, the degree of diabetic retinopathy (DR), and HbA1c level.

Methods

CCT and CCET values of 72 patients diagnosed with type 2 DM and 72 healthy individuals were measured by anterior segment optical coherence tomography.

The eye tear function was evaluated with the Tear Break-up Time test (TBUT) and the Schirmer test. From the results of fundus examination, the diabetic patients were grouped as those without DR, non-proliferative DR, and proliferative DR. The disease duration and the HbA1c levels were recorded.

Results

In the diabetic patients, the mean CCT was determined to be thicker (p = 0.025), the CCET was thinner (p = 0.003), and the TBUT and Schirmer values were lower (<0.001, <0.001, respectively). The duration of diabetes and the HbA1c level was not found to have any statistically significant effect on these parameters (>0.05). The presence of retinopathy had no significant effect on CCT, TBUT, and Schirmer values. The CCET was determined to be thinner in patients with retinopathy (<0.001).

Conclusions

As the corneal epithelial thickness is reduced in patients with advanced diabetic retinopathy, corneal epithelial pathologies can be seen more often. Therefore, early and effective treatment can be started by taking into consideration the complications which may develop associated with the corneal epithelium following surgical procedures, especially those applied to the cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabet Care 27:5–10

    Article  Google Scholar 

  2. American Diabetes Association (2001) Postprandial blood glucose. Diabet Care 24(4):775–778

    Article  Google Scholar 

  3. Falkenberg M, Finnström K (1994) Associations with retinopathy in type 2 diabetes: a population-based study in a Swedish rural area. Diabet Med 11(9):843–849

    Article  CAS  Google Scholar 

  4. Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabet Care 35(3):556–564

    Article  Google Scholar 

  5. Schultz RO, Van Horn DL, Peters MA et al (1981) Diabetic keratopathy. Trans Am Ophthalmol Soc 79:180–199

    CAS  Google Scholar 

  6. Lee JS, Oum BS, Choi HY et al (2006) Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye 20(3):315–318

    Article  CAS  Google Scholar 

  7. Dogru M, Katakami C, Inoue M (2001) Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus. Ophthalmology 108(3):586–592

    Article  CAS  Google Scholar 

  8. Lv H, Li A, Zhang X et al (2014) Meta-analysis and review on the changes of tear function and corneal sensitivity in diabetic patients. Acta Ophthalmol 92(2):96–104

    Article  Google Scholar 

  9. Didenko TN, Smoliakova GP, Sorokin EL et al (1999) Clinical and pathogenetic features of neurotrophic corneal disorders in diabetes. Vestn Oftalmol 115(6):7–11

    CAS  Google Scholar 

  10. Fraufelder FW, Rich LF (2002) Laser-assisted in situ keratomileusis complications in diabetes mellitus. Cornea 21(3):246–248

    Article  Google Scholar 

  11. Early Treatment Diabetic Retinopathy Study Research Group (1991) Fundus photographic risk factors for progression of diabetic retinopathy: ETDRS report number 12. Ophthalmology 98:823–833

    Article  Google Scholar 

  12. Koh YY, Sun CC, Hsiao CH (2020) Epidemiology and the estimated burden of microbial keratitis on the health care system in Taiwan: A 14-Year population-based study. Am J Ophthalmol 220:152–159

    Article  CAS  Google Scholar 

  13. Yoon KC, Im SK, Seo MA (2004) Changes in tear film and ocular surface in diabetes mellitus. Korean J Ophthalmol 18(2):168–174

    Article  Google Scholar 

  14. Sandra Johanna GP, Antonio LA, Andrés GS (2019) Correlation between type 2 diabetes, dry eye and Meibomian glands dysfunction. J Optom 12(4):256–262

    Article  Google Scholar 

  15. Yu T, Shi WY, Song AP, Gao Y, Dang GF, Ding G (2016) Changes of meibomian glands in patients with type 2 diabetes mellitus. Int J ophthalmol 9(12):1740

    Google Scholar 

  16. Goldich Y, Barkana Y, Gerber Y et al (2009) Effect of diabetes mellitus on biomechanical parameters of the cornea. J Cataract Refract Surg 35(4):715–719

    Article  Google Scholar 

  17. Storr-Paulsen A, Singh A, Jeppesen H et al (2014) Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. Acta Ophthalmol 92(2):158–160

    Article  Google Scholar 

  18. Suraida A-R, Ibrahim M, Zunaina E (2018) Correlation of the anterior ocular segment biometry with HbA1c level in type 2 diabetes mellitus patients. PloS One 13(1):e0191134. https://doi.org/10.1371/journal.pone.0191134

    Article  CAS  Google Scholar 

  19. Ozdamar Y, Cankaya B, Ozalp S et al (2010) Is there a correlation between diabetes mellitus and central corneal thickness. J Glaucoma 19(9):613–616

    Article  Google Scholar 

  20. Papadakou P, Chatziralli I, Papathanassiou M et al (2020) The effect of diabetes mellitus on corneal endothelial cells and central corneal thickness: a case-control study. Ophthalmic Res 63(6):550–554

    Article  CAS  Google Scholar 

  21. Çolak S, Kazanci B, Soba DO et al (2021) Effects of diabetes duration and HgA1C level on corneal endothelial morphology. Eur J Ophthalmol 31(3):967–975

    Article  Google Scholar 

  22. El-Agamy A, Alsubaie S (2017) Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. Clin Ophthalmol 11:481–486

    Article  CAS  Google Scholar 

  23. Wiemer NG, Dubbelman M, Kostense PJ et al (2007) The influence of chronic diabetes mellitus on the thickness and the shape of the anterior and posterior surface of the cornea. Cornea 26(10):1165–1170

    Article  Google Scholar 

  24. Wu YC, Buckner BR, Zhu M et al (2012) Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium. Ocul Surf 10(2):100–107

    Article  Google Scholar 

  25. Rosenberg ME, Tervo TM, Immonen IJ et al (2000) Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 41(10):2915–2921

    CAS  Google Scholar 

  26. Cai D, Zhu M, Petroll WM et al (2014) The impact of type 1 diabetes mellitus on corneal epithelial nerve morphology and the corneal epithelium. Am J Pathol 184(10):2662–2670

    Article  CAS  Google Scholar 

  27. Yin J, Huang J, Chen C et al (2011) Corneal complications in streptozocin-induced type I diabetic rats. Invest Ophthalmol Vis Sci 52(9):6589–6596

    Article  Google Scholar 

  28. Chang PY, Carrel H, Huang JS et al (2006) Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes in patients with diabetic retinopathy. Am J Ophthalmol 142(3):488–490

    Article  Google Scholar 

  29. Nitoda E, Kallinikos P, Pallikaris A et al (2012) Correlation of diabetic retinopathy and corneal neuropathy using confocal microscopy. Curr Eye Res 37(10):898–906

    Article  CAS  Google Scholar 

  30. De Cillà S, Ranno S, Carini E et al (2009) Corneal subbasal nerves changes in patients with diabetic retinopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci 50(11):5155–5158

    Article  Google Scholar 

  31. Pellegrini M, Sebastiani S, Tucci L et al (2021) Association between alterations of corneal sub-basal nerve plexus analyzed with in vivo confocal microscopy and long-term glycemic variability. Eur J Ophthalmol 31(5):2294–2299

    Article  Google Scholar 

  32. Kallinikos P, Berhanu M, O’Donnell C et al (2004) Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci 45(2):418–422

    Article  Google Scholar 

  33. Lomoriello DS, Abicca I, Parravano M et al (2019) Early alterations of corneal subbasal plexus in uncomplicated type 1 diabetes patients. J Ophthalmol 2019:9818217

    Google Scholar 

  34. Dehghani C, Pritchard N, Edwards K et al (2016) Risk factors associated with corneal nerve alteration in type 1 diabetes in the absence of neuropathy: a longitudinal in vivo corneal confocal microscopy study. Cornea 35(6):847–852

    Article  Google Scholar 

  35. Cui X, Hong J, Wang F et al (2014) Assessment of corneal epithelial thickness in dry eye patients. Optom Vis Sci 91(12):1446–1454

    Article  Google Scholar 

  36. Erdélyi B, Kraak R, Zhivov A et al (2007) In vivo confocal laser scanning microscopy of the cornea in dry eye. Graefes Arch Clin Exp Ophthalmol 245(1):39–44

    Article  Google Scholar 

  37. Villani E, Galimberti D, Viola F et al (2007) The cornea in Sjögren’s syndrome: an in vivo confocal study. Invest Ophthalmol Vis Sci 48(5):2017–2022

    Article  Google Scholar 

  38. Rattan SA, Anwar DS (2020) Comparison of corneal epithelial thickness profile in dry eye patients, keratoconus suspect, and healthy eyes. Eur J Ophthalmol 30(6):1506–1511

    Article  Google Scholar 

  39. Francoz M, Karamoko I, Baudouin C et al (2011) Ocular surface epithelial thickness evaluation with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52(12):9116–9123

    Article  Google Scholar 

  40. Fabiani C, Barabino S, Rashid S et al (2009) (2009) Corneal epithelial proliferation and thickness in a mouse model of dry eye. Exp Eye Res 89(2):166–171

    Article  CAS  Google Scholar 

  41. Kanellopoulos AJ, Asimellis G (2014) In vivo 3-dimensional corneal epithelial thickness mapping as an indicator of dry: preliminary clinical assessment. Am J Ophthalmol 157(1):63–68

    Article  Google Scholar 

  42. Misra S, Ahn HN, Craig JP et al (2013) Effect of panretinal photocoagulation on corneal sensation and the corneal subbasal nerve plexus in diabetes mellitus. Invest Ophthalmol Vis Sci 54(7):4485–4490

    Article  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Yusufoğlu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Approval was obtained from the ethics committee of Firat University of Medical Sciences. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusufoğlu, E., Güngör Kobat, S. & Keser, S. Evaluation of central corneal epithelial thickness with anterior segment OCT in patients with type 2 diabetes mellitus. Int Ophthalmol 43, 27–33 (2023). https://doi.org/10.1007/s10792-022-02384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02384-5

Keywords

Navigation