Skip to main content

Advertisement

Log in

The role of optical coherence tomography angiography in moderate and advanced primary open-angle glaucoma

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the relationship between structure and function in moderate and advanced primary open-angle glaucoma (POAG) and to determine the accuracy of structure and vasculature for discriminating moderate from advanced POAG.

Methods

In this cross-sectional study, 25 eyes with moderate and 40 eyes with advanced POAG were enrolled. All eyes underwent measurement of the thickness of circumpapillary retinal nerve fiber layer (cpRNFL) and macular ganglion cell complex (GCC), and optical coherence tomography angiography (OCTA) of the optic nerve head (ONH) and macula. Visual field (VF) was evaluated by Swedish interactive threshold algorithm and 24–2 and 10–2 patterns. The correlation between structure and vasculature and the mean deviation (MD) of the VFs was evaluated by a partial correlation coefficient. The area under the receiver operating characteristic curve (AUC) was applied for assessing the power of variables for discrimination moderate from advanced POAG.

Results

Including all eyes, whole image vessel density (wiVD) of the ONH area, and vessel density (VD) in the inferior quadrant of perifovea were the parameters with significant correlation with the mean deviation (MD) of the VF 24–2 in OCTA of the ONH and macula (r = .649 and .397; p < .05). The greatest AUCs for discriminating moderate and advanced POAG belonged to VD of the inferior hemifield of ONH area (.886; 95% CI (.805, .967)), and VD in the inferior quadrant of perifovea (.833; 95% CI (.736, .930)) without statistically significant difference (.886 Versus .833; p = .601).

Conclusion

Among vascular parameters of the ONH area, wiVD had the strongest correlation with the MD of the VF 24–2 while VD of the inferior hemifield of the ONH area had the greatest AUC for discriminating moderate and advanced POAG. Vessel density in the inferior quadrant of perifovea had a significant correlation with the MD of VF 24–2 and also the greatest AUC for discriminating moderate and advanced POAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [SMT], upon reasonable request.

References

  1. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311(18):1901–1911. https://doi.org/10.1001/jama.2014.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sit AJ, Pruet CM (2016) Personalizing intraocular pressure: target intraocular pressure in the setting of 24-hour intraocular pressure monitoring. Asia-Pac J Ophthalmol Phila Pa 5(1):17–22. https://doi.org/10.1097/APO.0000000000000178

    Article  Google Scholar 

  3. Weinreb RN (2008) Ocular blood flow in glaucoma. Can J Ophthalmol 43(3):281–283. https://doi.org/10.3129/i08-0584

    Article  PubMed  Google Scholar 

  4. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z et al (2017) Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124(5):709–719. https://doi.org/10.1016/j.ophtha.2017.01.004

    Article  PubMed  Google Scholar 

  5. Garas A, Vargha P, Holló G (2010) Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 117(4):738–746. https://doi.org/10.1016/j.ophtha.2009.08.039

    Article  PubMed  Google Scholar 

  6. Mwanza J-C, Budenz DL, Warren JL, Webel AD, Reynolds CE, Barbosa DT et al (2015) Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol 99(6):732–737. https://doi.org/10.1136/bjophthalmol-2014-305745

    Article  PubMed  Google Scholar 

  7. Mwanza J-C, Kim HY, Budenz DL, Warren JL, Margolis M, Lawrence SD et al (2015) Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms. Invest Ophthalmol Vis Sci 56(11):6344–6351. https://doi.org/10.1167/iovs.15-17248

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gessesse GW, Damji KF (2013) Advanced glaucoma: management pearls. Middle East Afr J Ophthalmol 20(2):131–141. https://doi.org/10.4103/0974-9233.110610

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bartz-Schmidt KU, Thumann G, Jonescu-Cuypers CP, Krieglstein GK (1999) Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol 44(Suppl 1):S41-53. https://doi.org/10.1016/s0039-6257(99)00076-4

    Article  PubMed  Google Scholar 

  10. Bowd C, Zangwill LM, Weinreb RN, Medeiros FA, Belghith A (2017) Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. Am J Ophthalmol 175:37–44. https://doi.org/10.1016/j.ajo.2016.11.010

    Article  PubMed  Google Scholar 

  11. Belghith A, Medeiros FA, Bowd C, Liebmann JM, Girkin CA, Weinreb RN et al (2016) Structural change can be detected in advanced-glaucoma eyes. Invest Ophthalmol Vis Sci. 57(9):511–8. https://doi.org/10.1167/iovs.15-18929

    Article  Google Scholar 

  12. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Expr 20(4):4710–4725. https://doi.org/10.1364/OE.20.004710

    Article  Google Scholar 

  13. Manalastas PIC, Zangwill LM, Saunders LJ, Mansouri K, Belghith A, Suh MH et al (2017) Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma 26(10):851–859. https://doi.org/10.1097/IJG.0000000000000768

    Article  PubMed  PubMed Central  Google Scholar 

  14. Venugopal JP, Rao HL, Weinreb RN, Pradhan ZS, Dasari S, Riyazuddin M et al (2018) Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol 102(3):352–357. https://doi.org/10.1136/bjophthalmol-2017-310637

    Article  PubMed  Google Scholar 

  15. Moghimi S, Hou H, Rao H, Weinreb RN (2019) Optical coherence tomography angiography and glaucoma: a brief review. Asia-Pacific J Ophthalmol (Philadelphia, Pa.) 25:45. https://doi.org/10.22608/APO.20191416

    Article  Google Scholar 

  16. Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H et al (2019) Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 126(7):980–988. https://doi.org/10.1016/j.ophtha.2019.03.003

    Article  PubMed  Google Scholar 

  17. Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN (2020) Optical coherence tomography angiography in glaucoma. J Glaucoma 29(4):312–321. https://doi.org/10.1097/IJG.0000000000001463

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jo YH, Sung KR, Shin JW (2020) Peripapillary and macular vessel density measurement by optical coherence tomography angiography in pseudoexfoliation and primary open-angle glaucoma. J Glaucoma 29(5):381–385. https://doi.org/10.1097/IJG.0000000000001464

    Article  PubMed  Google Scholar 

  19. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol Chic Ill 1960. 120(6):829–830. https://doi.org/10.1001/archopht.120.6.701

    Article  Google Scholar 

  20. Chan KKW, Tang F, Tham CCY, Young AL, Cheung CY (2017) Retinal vasculature in glaucoma: a review. BMJ Open Ophthalmol 1(1):e000032. https://doi.org/10.1136/bmjophth-2016-000032

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC (1995) Hypertension, perfusion pressure, and primary open-angle glaucoma .a population-based assessment. Arch Ophthalmol Chic Ill 1960. 113(2):216–21. https://doi.org/10.1001/archopht.1995.01100020100038

    Article  CAS  Google Scholar 

  22. Mitchell P, Smith W, Chey T, Healey PR (1997) Open-angle glaucoma and diabetes: the Blue Mountains eye study. Australia Ophthalmol 104(4):712–718. https://doi.org/10.1016/s0161-6420(97)30247-4

    Article  CAS  Google Scholar 

  23. Flammer J, Konieczka K, Flammer AJ (2013) The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 4(1):14. https://doi.org/10.1186/1878-5085-4-14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gherghel D, Orgül S, Gugleta K, Gekkieva M, Flammer J (2000) Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol 130(5):597–605. https://doi.org/10.1016/s0002-9394(00)00766-2

    Article  CAS  PubMed  Google Scholar 

  25. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N et al (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 57(9):451–459. https://doi.org/10.1167/iovs.15-18944

    Article  Google Scholar 

  26. Kumar RS, Anegondi N, Chandapura RS, Sudhakaran S, Kadambi SV, Rao HL et al (2016) Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Invest Ophthalmol Vis Sci 57(14):6079–6088. https://doi.org/10.1167/iovs.16-19984

    Article  PubMed  Google Scholar 

  27. Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S et al (2017) Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol 101(9):1261–1268. https://doi.org/10.1136/bjophthalmol-2016-309642

    Article  PubMed  Google Scholar 

  28. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S et al (2016) Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol 171:75–83. https://doi.org/10.1016/j.ajo.2016.08.030

    Article  PubMed  Google Scholar 

  29. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP et al (2017) A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS ONE 12(3):e0173930. https://doi.org/10.1371/journal.pone.0173930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ et al (2016) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123(12):2498–2508. https://doi.org/10.1016/j.ophtha.2016.08.041

    Article  PubMed  Google Scholar 

  31. Chen HS-L, Liu C-H, Wu W-C, Tseng H-J, Lee Y-S (2017) Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 58(9):3637–3645. https://doi.org/10.1167/iovs.17-21846

    Article  PubMed  Google Scholar 

  32. Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T et al (2018) Optical coherence tomography angiography macular vascular density measurements and the central 10–2 visual field in glaucoma. J Glaucoma 27(6):481–489. https://doi.org/10.1097/IJG.0000000000000964

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghahari E, Bowd C, Zangwill LM, Proudfoot J, Hasenstab KA, Hou H et al (2019) Association of macular and circumpapillary microvasculature with visual field sensitivity in advanced glaucoma. Am J Ophthalmol 204:51–61. https://doi.org/10.1016/j.ajo.2019.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS et al (2017) Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol 101(8):1066–1070. https://doi.org/10.1136/bjophthalmol-2016-309377

    Article  PubMed  Google Scholar 

  35. Chihara E, Dimitrova G, Amano H, Chihara T (2017) Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci 58(1):690–697. https://doi.org/10.1167/iovs.16-20709

    Article  PubMed  Google Scholar 

  36. Rao HL, Riyazuddin M, Dasari S, Puttaiah NK, Pradhan ZS, Weinreb RN et al (2018) Diagnostic abilities of the optical microangiography parameters of the 3×3 mm and 6×6 mm macular scans in glaucoma. J Glaucoma 27(6):496–503. https://doi.org/10.1097/IJG.0000000000000952

    Article  PubMed  Google Scholar 

  37. Wan KH, Lam AKN, Leung CK-S (2018) Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol 136(8):866–874. https://doi.org/10.1001/jamaophthalmol.2018.1627

    Article  PubMed  PubMed Central  Google Scholar 

  38. Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB et al (2018) Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol 136(5):507–513. https://doi.org/10.1001/jamaophthalmol.2018.0776

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mehdi Tabatabaei.

Ethics declarations

Conflict of interest

Yadollah Eslami declares that he has no conflict of interest. Sepideh Ghods declares that she has no conflict of interest. Massood Mohammadi declares that he has no conflict of interest. Mona Safizadeh declares that she has no conflict of interest. Ghasem Fakhraie declares that he has no conflict of interest. Reza Zarei declares that he has no conflict of interest. Zakieh Vahedian declares that she has no conflict of interest. Seyed Mehdi Tabatabaei declares that he has no conflict of interest.

Ethical approval

All procedures performed in this study which involve human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The IRB/ethical committee of Tehran University of the Medical Sciences approved the study (IR.TUMS.MEDICINE.REC.1397.724).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

There is no identifying information about participants available in the article, so this issue is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, Y., Ghods, S., Mohammadi, M. et al. The role of optical coherence tomography angiography in moderate and advanced primary open-angle glaucoma. Int Ophthalmol 42, 3645–3659 (2022). https://doi.org/10.1007/s10792-022-02360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02360-z

Keywords

Navigation