Skip to main content
Log in

Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

It has been gradually recognized that circular RNAs (circRNAs) are important modulators in multiple malignancies. Here, we analyzed the function of circ_0075804 and explored its associated mechanism in regulating retinoblastoma (RB) progression.

Methods

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were utilized to measure RNA and protein expression, respectively. Cell proliferation was analyzed by Cell counting kit-8 (CCK8) assay and 5-Ethynyl-2’-deoxyuridine (EdU) assay. Cell apoptosis was assessed by flow cytometry. Cell migration and invasion abilities were analyzed by wound healing assay and transwell invasion assay. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to verify intermolecular target relations. Xenograft tumor model was used to analyze the role of circ_0075804 in tumor growth in vivo.

Results

Circ_0075804 expression was markedly up-regulated in RB tissues and cell lines. Circ_0075804 knockdown restrained the proliferation, migration and invasion whereas promoted the apoptosis of RB cells. Circ_0075804 acted as a molecular sponge for microRNA-138-5p (miR-138-5p), and circ_0075804 silencing-induced effects were partly reversed by miR-138-5p knockdown in RB cells. MiR-138-5p interacted with the 3’ untranslated region (3’UTR) of paternally expressed 10 (PEG10). Circ_0075804 positively regulated PEG10 level by sponging miR-138-5p in RB cells. PEG10 overexpression largely overturned miR-138-5p overexpression-mediated effects in RB cells. Circ_0075804 knockdown blocked xenograft tumor growth in vivo.

Conclusion

Circ_0075804 promoted RB progression via miR-138-5p-dependent regulation of PEG10, which provided new insight in RB therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Please contact the correspondence author for the data request.

References

  1. Fabian ID, Onadim Z, Karaa E, Duncan C, Chowdhury T, Scheimberg I, Ohnuma SI, Reddy MA, Sagoo MS (2018) The management of retinoblastoma. Oncogene 37(12):1551–1560. https://doi.org/10.1038/s41388-017-0050-x

    Article  CAS  PubMed  Google Scholar 

  2. Shields CL, Shields JA (2006) Basic understanding of current classification and management of retinoblastoma. Curr Opin Ophthalmol 17(3):228–234. https://doi.org/10.1097/01.icu.0000193079.55240.18

    Article  PubMed  Google Scholar 

  3. Liu Q, Wang Y, Wang H, Liu Y, Liu T, Kunda PE (2013) Tandem therapy for retinoblastoma: immunotherapy and chemotherapy enhance cytotoxicity on retinoblastoma by increasing apoptosis. J Cancer Res Clin Oncol 139(8):1357–1372. https://doi.org/10.1007/s00432-013-1448-7

    Article  CAS  PubMed  Google Scholar 

  4. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388. https://doi.org/10.1080/15476286.2015.1020271

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018) CircRNA: a novel type of biomarker for cancer. Breast Cancer (Tokyo, Japan) 25(1):1–7. https://doi.org/10.1007/s12282-017-0793-9

    Article  Google Scholar 

  6. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16(1):94. https://doi.org/10.1186/s12943-017-0663-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao W, Wang S, Qin T, Wang W (2020) Circular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3. J Cell Biochem 121(7):3516–3525. https://doi.org/10.1002/jcb.29631

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, Xu D, Lin HK, Gong Z (2015) Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 5(2):472–480

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365(2):141–148. https://doi.org/10.1016/j.canlet.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  10. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  11. Zhang W, Liao K, Liu D (2020) MiR-138-5p inhibits the proliferation of gastric cancer cells by targeting DEK. Cancer Manag Res 12:8137–8147. https://doi.org/10.2147/cmar.s253777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang D, Liu X, Zhang Q, Chen X (2020) miR-138-5p inhibits the malignant progression of prostate cancer by targeting FOXC1. Cancer Cell Int 20:297. https://doi.org/10.1186/s12935-020-01386-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Yao YJ, Zheng F, Guan Z, Zhang L, Dong N, Qin WJ (2017) Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma. Eur Rev Med Pharmacol Sci 21(24):5624–5629. https://doi.org/10.26355/eurrev_201712_14005

    Article  CAS  PubMed  Google Scholar 

  14. Liu B, Li J, Cairns MJ (2014) Identifying miRNAs, targets and functions. Brief Bioinform 15(1):1–19. https://doi.org/10.1093/bib/bbs075

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  Google Scholar 

  16. Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q (2016) PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 48(5):1933–1942. https://doi.org/10.3892/ijo.2016.3406

    Article  CAS  PubMed  Google Scholar 

  17. Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS, Liu X, Liu XC, Gao WT, Jiang KR, Miao Y (2017) PEG10 overexpression induced by E2F–1 promotes cell proliferation, migration, and invasion in pancreatic cancer. J Exp Clin Cancer Res CR 36(1):30. https://doi.org/10.1186/s13046-017-0500-x

    Article  CAS  PubMed  Google Scholar 

  18. Ding F, Jiang K, Sheng Y, Li C, Zhu H (2020) LncRNA MIR7-3HG executes a positive role in retinoblastoma progression via modulating miR-27a-3p/PEG10 axis. Exp Eye Res 193:107960. https://doi.org/10.1016/j.exer.2020.107960

    Article  CAS  PubMed  Google Scholar 

  19. Rao R, Honavar SG (2017) Retinoblastoma. Indian J Pediatr 84(12):937–944. https://doi.org/10.1007/s12098-017-2395-0

    Article  PubMed  Google Scholar 

  20. Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565. https://doi.org/10.1038/onc.2017.361

    Article  CAS  PubMed  Google Scholar 

  21. Tang Q, Chen Z, Zhao L, Xu H (2019) Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging 11(22):9982–9999. https://doi.org/10.18632/aging.102356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pan G, Mao A, Liu J, Lu J, Ding J, Liu W (2020) Circular RNA hsa_circ_0061825 (circ-TFF1) contributes to breast cancer progression through targeting miR-326/TFF1 signalling. Cell Prolif 53(2):e12720. https://doi.org/10.1111/cpr.12720

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W (2015) ceRNA in cancer: possible functions and clinical implications. J Med Genet 52(10):710–718. https://doi.org/10.1136/jmedgenet-2015-103334

    Article  CAS  PubMed  Google Scholar 

  24. Karreth FA, Pandolfi PP (2013) ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov 3(10):1113–1121. https://doi.org/10.1158/2159-8290.cd-13-0202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Wu J, Li Y, Jiang Y, Wang L, Chen Y, Lv Y, Zou Y, Ding X (2020) Circ_0000527 promotes the progression of retinoblastoma by regulating miR-646/LRP6 axis. Cancer Cell Int 20:301. https://doi.org/10.1186/s12935-020-01396-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Y, Xiao F, Wang L, Wang T, Chen L (2021) Circular RNA has_circ_0000034 accelerates retinoblastoma advancement through the miR-361-3p/ADAM19 axis. Mol Cell Biochem 476(1):69–80. https://doi.org/10.1007/s11010-020-03886-5

    Article  CAS  PubMed  Google Scholar 

  27. Xing S, Xu Q, Fan X, Wu S, Tian F (2019) Downregulation of miR-138-5p promotes non-small cell lung cancer progression by regulating CDK8. Mol Med Rep 20(6):5272–5278. https://doi.org/10.3892/mmr.2019.10741

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Zhao Y, Cao W, Wang C, Sun B, Chen J, Li S, Chen J, Cui M, Zhang B, Yang G, Liu Y, Yu X, Zhang G (2017) miR-138-5p acts as a tumor suppressor by targeting hTERT in human colorectal cancer. Int J Clin Exp Pathol 10(12):11516–11525

    PubMed  PubMed Central  Google Scholar 

  29. Panda AC (2018) Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol 1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6

    Article  CAS  PubMed  Google Scholar 

  30. Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8(42):73271–73281. https://doi.org/10.18632/oncotarget.19154

    Article  PubMed  PubMed Central  Google Scholar 

  31. Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, Brahmbhatt S, Bell R, Adomat H, Kawai Y, Xue H, Dong X, Fazli L, Tsai H, Lotan TL, Kossai M, Mosquera JM, Rubin MA, Beltran H, Zoubeidi A, Wang Y, Gleave ME, Collins CC (2015) The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 12(6):922–936. https://doi.org/10.1016/j.celrep.2015.07.012

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Social Science Project in Longhua District(Basic Research Program)(No. 10162A20190729B559B3B) and Shenzhen Science and Technology (No. JCYJ20190812155213250).

Author information

Authors and Affiliations

Authors

Contributions

YZ was responsible for drafting the manuscript. YZ and XD contributed to the analysis and interpretation of data. QK, YL and XZ contributed in the data collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanling Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Written informed consent was obtained from patients with approval by the Institutional Review Board in Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dou, X., Kong, Q. et al. Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression. Int Ophthalmol 42, 509–523 (2022). https://doi.org/10.1007/s10792-021-02067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-02067-7

Keywords

Navigation