Skip to main content

Advertisement

Log in

Sectorwise analysis of peripapillary vessel density and retinal nerve fiber layer thickness in exfoliation syndrome

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This cross-sectional study compared the peripapillary vessel density and retinal nerve fiber layer (RNFL) thickness in patients with exfoliation syndrome (XFS) and healthy controls for evaluation of the early structural and vascular alterations in XFS.

Methods

One eye was included from 75 patients with XFS and 54 healthy controls. The patients with XFS were matched the controls for age, intraocular pressure and axial length. The vascular density of the radial peripapillary capillaries (RPCs) and the peripapillary RNFL thickness were evaluated with optical coherence tomography angiography.

Results

The mean peripapillary RNFL thicknesses of the groups were similar in all sectors (p > 0.05 for all). However, eyes with XFS demonstrated lower mean peripapillary vessel densities in all areas (p < 0.05 for all) except for the nasal sector (p = 0.68) compared to the controls. The gradual age correlated decline in the peripapillary RNFL thickness and the RPC vessel density observed in the healthy eyes was absent in XFS (r = − 0.14 p = 0.65 and r = − 0.23 p = 0.05).

Conclusions

Alterations in the peripapillary vascular density despite a preserved RNFL thickness in XFS supports the hypothesis that vascular alterations may precede structural alterations and have an important role in the pathogenesis of XFS. XFS may have different effects on the microvasculature of different peripapillary areas, with the nasal sector being mostly preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Individual participant data that underlie the results reported in this article may be reached at Ulucanlar Ophthalmology Research and Training Hospital patient files archive, immediately following article publication and ending 12 months following publication. The persistent URL is ulucanlargozeah.saglik.gov.tr. Proposals can be directed to ulucanlargoz@saglik.gov.tr.

References

  1. Ritch R (1994) Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma. J Glaucoma 3(2):176–177

    CAS  PubMed  Google Scholar 

  2. Schlötzer-Schrehardt U, Koca MR, Naumann GOH et al (1992) Pseudoexfoliation syndrome: ocular manifestation of a systemic disorder? Arch Ophthalmol 110:1752–1756

    Article  PubMed  Google Scholar 

  3. Holló G (2014) Exfoliation syndrome and systemic cardiovascular diseases. J Glaucoma 23:S9-11

    Article  PubMed  Google Scholar 

  4. Andrikopoulos GK, Alexopoulos DK, Gartaganis SP (2014) Pseudoexfoliation syndrome and cardiovascular diseases. World J Cardiol 6:847–854

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zs V, Merisch B, Kollai M et al (2006) Increase of carotid artery stiffness and decrease of baroreflex sensitivity in exfoliation syndrome and glaucoma. Br J Ophthalmol 90:563–567

    Article  Google Scholar 

  6. Goren Sahin D, Sahin A, Akay OM (2016) Comparison of rotational thromboelastography findings in pseudoexfoliation syndrome patients and healthy controls. J Glaucoma 25:879–882

    Article  PubMed  Google Scholar 

  7. Tanito M, Kaidzu S, Takai Y et al (2012) Status of systemic oxidative stress in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLOS ONE 7:e49680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yagci R, Ersöz I, Erdurmus M et al (2008) Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation syndrome. Eye 22:128–131

    Article  CAS  PubMed  Google Scholar 

  9. Tetikoglu M, Sagdik HM, Aktas S et al (2016) Serum prolidase activity and oxidative stress in patients with pseudoexfoliation syndrome. Graefes Arch Clin Exp Ophthalmol 254:1339–1343

    Article  CAS  PubMed  Google Scholar 

  10. Praveen MR, Shah SK, Vasavada AR et al (2011) Pseudoexfoliation as a risk factor for peripheral vascular disease: a case-control study. Eye 25:174–179

    Article  CAS  PubMed  Google Scholar 

  11. Atalar PT, Atalar E, Kilic H et al (2006) Impaired systemic endothelial function in patients with pseudoexfoliation syndrome. Int Heart J 47:77–84

    Article  PubMed  Google Scholar 

  12. Wolosin JM, Ritch R, Bernstein AM (2018) Is Autophagy dysfunction a key to exfoliation glaucoma? J Glaucoma 27(3):197–201

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen CL, Zhang A, Bojikian KD et al (2016) Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography- based microangiography. Invest Ophthalmol Vis Sci 57:475–485

    Article  Google Scholar 

  14. Jia Y, Wei E, Wang X et al (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332

    Article  PubMed  Google Scholar 

  15. Chen CL, Bojikian KD, Wen JC et al (2017) Peripapillary retinal nerve fiber layer & vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss. JAMA Ophthalmol 135:461–468

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Jia Y, Takusagawa HL et al (2015) Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 133:1045–1052

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2017) Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124:709–719

    Article  PubMed  Google Scholar 

  18. Takusagawa HL, Liu L, Ma KN, Jia Y et al (2017) Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 124(11):1589–1599

    Article  PubMed  Google Scholar 

  19. Suwan Y, Geyman LS, Fard MA et al (2018) Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma vs POAG and healthy controls: an optical coherence tomography angiography study. Asia Pac J Ophthalmol 7:84–89

    Google Scholar 

  20. Goker YS, Kızıltoprak H (2020) Quantitative analysis of radial peripapillary capillary plexuses in patients with clinically unilateral pseudoexfoliation syndrome. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-020-04643-6

    Article  PubMed  Google Scholar 

  21. Ritch R, Schlotzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45:265–315

    Article  CAS  PubMed  Google Scholar 

  22. Braunsmann C, Hammer CM, Rheinlaender J et al (2012) Evaluation of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy. Invest Ophthalmol Vis Sci 17:2960–2967

    Article  Google Scholar 

  23. Schlötzer-Schrehardt U, Hammer CM, Krysta AW et al (2012) LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation- specific risk of glaucoma. Ophthalmology 119:1832–1843

    Article  PubMed  Google Scholar 

  24. Zenkel M, Lewczuk P, Junemann A et al (2010) Proinflammatory cytokines are involved in the initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am J Pathol 176:2868–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beyazyıldız E, Cankaya AB, Beyazyıldız O et al (2014) Disturbed oxidant/antioxidant balance in aqueous humour of patients with exfoliation syndrome. Jpn J Ophthalmol 58:353–358

    Article  PubMed  Google Scholar 

  26. Yuksel N, Altintas O, Celik M et al (2007) Analysis of retinal nerve fiber layer thickness in patients with pseudo-exfoliation syndrome using optical coherence tomography. Ophthalmologica 22:299–304

    Article  Google Scholar 

  27. Rao A (2012) Clinical and optical coherence tomography features in unilateral versus bilateral pseudoexfoliation syndrome. J Ophthalmic Vis Res 7:197–202

    PubMed  PubMed Central  Google Scholar 

  28. Eltutar K, Acar F, Kayaarası Öztürker Z et al (2016) Structural changes in pseudoexfoliation syndrome evaluated with spectral domain optical coherence tomography. Curr Eye Res 41(4):513–520

    CAS  PubMed  Google Scholar 

  29. Aydin D, Kusbeci T, Uzunel UD et al (2016) Evaluation of retinal nerve fiber layer and ganglion cell complex thickness in unilateral exfoliation syndrome using optical coherence tomography. J Glaucoma 25:523–527

    Article  PubMed  Google Scholar 

  30. Park JH, Yoo C, Girard MJA et al (2018) Peripapillary vessel density in glaucomatous eyes: comparison between pseudoexfoliation glaucoma and primary open-angle glaucoma. J Glaucoma 27(11):1009–1016

    Article  PubMed  Google Scholar 

  31. Jo YH, Sung KR, Shin JW (2019) Effects of age on peripapillary and macular vessel density determined using optical coherence tomography angiography in healthy eyes. Invest Ophthalmol Vis Sci 60:3492–3498

    Article  PubMed  Google Scholar 

  32. Kim M, Eom Y, Song JS et al (2018) Effect of cataract grade according to wide-field fundus images on measurement of macular thickness in cataract patients. Korean J Ophthalmol 32:172–181

    Article  PubMed  PubMed Central  Google Scholar 

  33. Holló G, Katsanos A and Konstas AG, (2015) Management of exfoliative glaucoma: challenges and solutions. Clin Ophthalmol 9:907–919

    Google Scholar 

  34. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 57:451–459

    Article  Google Scholar 

  35. Ghaffari Sharaf M, Damji KF, Unsworth LD (2014) Recent advances in risk factors associated with ocular exfoliation syndrome. Acta Ophthalmol 98(2):113–120

    Article  Google Scholar 

  36. Yu J, Huang Q, Zhou X et al (2018) Retina nerve fiber layer thickness changes in the pseudo exfoliation syndrome: a meta-analysis of case-control studies. Ophthalmic Res 59:14–23

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the design of the study, the interpretation of data and the draft, gave their final approval to the manuscript, and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Gozde Hondur.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

A written consent was obtained from each subject.

Consent for publication

Not applicable. This manuscript does not contain personal and/or medical information about an identifiable living individual.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hondur, G., Ucgul Atilgan, C. & Hondur, A.M. Sectorwise analysis of peripapillary vessel density and retinal nerve fiber layer thickness in exfoliation syndrome. Int Ophthalmol 41, 3805–3813 (2021). https://doi.org/10.1007/s10792-021-01950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01950-7

Keywords

Navigation