Skip to main content

Advertisement

Log in

Association of OCT-A characteristics with postoperative visual acuity after rhegmatogenous retinal detachment surgery: a review of the literature

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Emerging evidence has suggested that macular microcirculation and microstructural changes after rhegmatogenous retinal detachment (RRD) successful reattachment surgery are currently evaluated in detail by OCT-Angiography (OCT-A). New imaging technology has revealed the existence of microscopic macular changes, even in cases that retinal morphology appears to be normal in fundus biomicroscopy. The use of OCT-A for the examination of foveal characteristics has attracted significant attention in recent years as the technique offers a potential explanation of the suboptimal recovery of visual acuity and incomplete restoration of the macula despite anatomical repair. However, the available evidence that is needed to establish the OCT-A parameters as predicting factors in clinical practice is both limited and contradictory.

Methods

A detailed review of the literature was conducted. The association of OCT-A characteristics with postoperative visual acuity after RRD surgery, including vitrectomy with gas tamponade and in some cases scleral buckle, was extensively analyzed.

Results

A comprehensive update on microcirculation and microstructural changes of the macula using OCT-A after RRD repair may indicate potential factors of functional outcomes in clinical practice.

Conclusion

A review of the existing literature sheds light on the microvascular changes of the macular capillary plexus that may significantly affect functional outcomes after RRD surgery. The current article discusses important aspects of key publications on the topic, highlights the importance of long-term effectiveness of these possible prognostic factors and proposes the need for further future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhn F, Aylward B (2014) Rhegmatogenous retinal detachment: a reappraisal of its pathophysiology and treatment. Ophthalmic Res 51(1):15–31

    PubMed  Google Scholar 

  2. Delolme MP, Dugas B, Nicot F, Muselier A, Bron AM, Creuzot-Garcher C (2012) Anatomical and functional macular changes after rhegmatogenous retinal detachment with macula off. Am J Ophthalmol 153(1):128–136

    PubMed  Google Scholar 

  3. D’Amico DJ (2008) Clinical practice. Primary retinal detachment. N Engl J Med. 359(22):2346–2354

    PubMed  Google Scholar 

  4. Woo JM, Yoon YS, Woo JE, Min JK (2018) foveal avascular zone area changes analyzed using OCT angiography after successful rhegmatogenous retinal detachment repair. Curr Eye Res 43(5):674–678

    PubMed  Google Scholar 

  5. Sato T, Kanai M, Busch C, Wakabayashi T (2017) Foveal avascular zone area after macula-off rhegmatogenous retinal detachment repair: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 255(10):2071–2072

    PubMed  Google Scholar 

  6. Wei E, Jia Y, Tan O, Potsaid B, Liu JJ, Choi W, Fujimoto JG, Huang D (2013) Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS ONE 8(12):e81343

    PubMed  PubMed Central  Google Scholar 

  7. Yui N, Kunikata H, Aizawa N (2019) Nakazawa T Optical coherence tomography angiography assessment of the macular capillary plexus after surgery for macula-off rhegmatogenous retinal detachment. Graefes Arch Clin Exp Ophthalmol 257(1):245–248

    PubMed  Google Scholar 

  8. Wang H, Xu X, Sun X, Ma Y, Sun T (2019) Macular perfusion changes assessed with optical coherence tomography angiography after vitrectomy for rhegmatogenous retinal detachment. Graefes Arch Clin Exp Ophthalmol 257(4):733–740

    PubMed  Google Scholar 

  9. Tsen CL, Sheu SJ, Chen SC (2019) Wu TT Imaging analysis with optical coherence tomography angiography after primary repair of macula-off rhegmatogenous retinal detachment. Graefes Arch Clin Exp Ophthalmol 257(9):1847–1855

    PubMed  Google Scholar 

  10. Yoshikawa Y, Shoji T, Kanno J, Ibuki H, Ozaki K, Ishii H, Ichikawa Y, Kimura I, Shinoda K (2018) Evaluation of microvascular changes in the macular area of eyes with rhegmatogenous retinal detachment without macular involvement using swept-source optical coherence tomography angiography. Clin Ophthalmol 12:2059–2067

    PubMed  PubMed Central  Google Scholar 

  11. Chatziralli I, Theodossiadis G, Parikakis E, Chatzirallis A, Dimitriou E, Theodossiadis P (2020) Inner retinal layers’ alterations and microvasculature changes after vitrectomy for rhegmatogenous retinal detachment. Int Ophthalmol 40(12):3349–3356. https://doi.org/10.1007/s10792-020-01521-2

    Article  PubMed  Google Scholar 

  12. Roohipoor R, Tayebi F, Riazi-Esfahani H, Khodabandeh A, Karkhaneh R, Davoudi S, Khurshid GS, Momenaei B, Ebrahimiadib N, Modjtahedi BS (2020) Optical coherence tomography angiography changes in macula-off rhegmatogenous retinal detachments repaired with silicone oil. Int Ophthalmol 40(12):3295–3302. https://doi.org/10.1007/s10792-020-01516-z

    Article  PubMed  Google Scholar 

  13. Xu C, Wu J, Feng C (2020) Changes in the postoperative foveal avascular zone in patients with rhegmatogenous retinal detachment associated with choroidal detachment. Int Ophthalmol 40(10):2535–2543. https://doi.org/10.1007/s10792-020-01433-1

    Article  PubMed  Google Scholar 

  14. Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31(5):377–406

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Duker J, Weiter JJ (1991) Ocular circulation. In: Tasman W, Jaeger EA (eds) Duane’s foundations of clinical ophthalmology. JB Lippincott, New York

    Google Scholar 

  16. Saito M, Saito W, Hashimoto Y, Yoshizawa C, Shinmei Y, Noda K, Ishida S (2014) Correlation between decreased choroidal blood flow velocity and the pathogenesis of acute zonal occult outer retinopathy. Clin Exp Ophthalmol 42(2):139–150

    PubMed  Google Scholar 

  17. Hashimoto Y, Saito W, Saito M, Hirooka K, Mori S, Noda K, Ishida S (2015) Decreased choroidal blood flow velocity in the pathogenesis of multiple evanescent white dot syndrome. Graefes Arch Clin Exp Ophthalmol 253(9):1457–1464

    PubMed  Google Scholar 

  18. Ishikawa Y, Hashimoto Y, Saito W, Ando R, Ishida S (2017) Blood flow velocity and thickness of the choroid in a patient with chorioretinopathy associated with ocular blunt trauma. BMC Ophthalmol 17(1):86

    PubMed  PubMed Central  Google Scholar 

  19. Dodo Y, Suzuma K, Ishihara K, Yoshitake S, Fujimoto M, Yoshitake T, Miwa Y, Murakami T (2017) Clinical relevance of reduced decorrelation signals in the diabetic inner choroid on optical coherence tomography angiography. Sci Rep 7(1):5227

    PubMed  PubMed Central  Google Scholar 

  20. Eshita T, Shinoda K, Kimura I, Kitamura S, Ishida S, Inoue M, Mashima Y, Katsura H, Oguchi Y (2004) Retinal blood flow in the macular area before and after scleral buckling procedures for rhegmatogenous retinal detachment without macular involvement. Jpn J Ophthalmol 48(4):358–363

    PubMed  Google Scholar 

  21. Sato EA, Shinoda K, Kimura I, Ohtake Y, Inoue M (2007) Microcirculation in eyes after rhegmatogenous retinal detachment surgery. Curr Eye Res 32(9):773–779

    CAS  PubMed  Google Scholar 

  22. Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, Jia Y, Huang D, Sun X (2015) Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci 56(5):3212–3217

    PubMed  PubMed Central  Google Scholar 

  23. Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M (2016) Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 56:6–12

    PubMed  Google Scholar 

  24. Tam J, Dhamdhere KP, Tiruveedhula P, Manzanera S, Barez S, Bearse MA Jr, Adams AJ, Roorda A (2011) Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest Ophthalmol Vis Sci 52(12):9257–9266

    PubMed  PubMed Central  Google Scholar 

  25. Say EA, Samara WA, Khoo CT, Magrath GN, Sharma P, Ferenczy S, Shields CL (2016) parafoveal capillary density after plaque radiotherapy for choroidal melanoma: analysis of eyes without radiation maculopathy. Retina 36(9):1670–1678

    PubMed  Google Scholar 

  26. Cardillo PF (1983) Vascular changes in rhegmatogenous retinal detachment. Ophthalmologica 186(1):17–24

    Google Scholar 

  27. Wolfensberger TJ, Gonvers M (2002) Optical coherence tomography in the evaluation of incomplete visual acuity recovery after macula-off retinal detachments. Graefes Arch Clin Exp Ophthalmol 240(2):85–89

    PubMed  Google Scholar 

  28. Benson SE, Schlottmann PG, Bunce C, Xing W, Charteris DG (2007) Optical coherence tomography analysis of the macula after scleral buckle surgery for retinal detachment. Ophthalmology 114(1):108–112

    PubMed  Google Scholar 

  29. Kang HM, Lee SC, Lee CS (2015) Association of spectral-domain optical coherence tomography findings with visual outcome of macula-off rhegmatogenous retinal detachment surgery. Ophthalmologica 234(2):83–90

    PubMed  Google Scholar 

  30. Park DH, Choi KS, Sun HJ (2018) Lee SJ Factors associated with visual outcome after macula-off rhegmatogenous retinal detachment surgery. Retina 38(1):137–147

    PubMed  Google Scholar 

  31. Abouzeid H, Wolfensberger TJ (2006) Macular recovery after retinal detachment. Acta Ophthalmol Scand 84(5):597–605

    PubMed  Google Scholar 

  32. Lecleire-Collet A, Muraine M, Menard JF, Brasseur G (2005) Predictive visual outcome after macula-off retinal detachment surgery using optical coherence tomography. Retina 25(1):44–53

    PubMed  Google Scholar 

  33. Ross WH, Stockl FA (2000) Visual recovery after retinal detachment. Curr Opin Ophthalmol 11(3):191–194

    CAS  PubMed  Google Scholar 

  34. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50

    PubMed  Google Scholar 

  35. Chen X, Rahimy E, Sergott RC, Nunes RP, Souza EC, Choudhry N, Cutler NE, Houston SK, Munk MR, Fawzi AA, Mehta S, Hubschman JP, Ho AC, Sarraf D (2015) Spectrum of retinal vascular diseases associated with paracentral acute middle maculopathy. Am J Ophthalmol. 160(1):26-34.e1

    PubMed  Google Scholar 

  36. Adhi M, Filho MA, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, Witkin AJ, Sadda SR, Sarraf D, Reichel E, Duker JS, Waheed NK (2016) Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):486–494

    Google Scholar 

  37. Bonnin S, Mané V, Couturier A, Julien M, Paques M, Tadayoni R, Gaudric A (2015) New insight into the macular deep vascular plexus imaged by optical coherence tomography angiography. Retina 35(11):2347–2352

    PubMed  Google Scholar 

  38. Hong EH, Cho H, Kim DR, Kang MH, Shin YU, Seong M (2020) Changes in retinal vessel and retinal layer thickness after vitrectomy in retinal detachment via swept-source OCT angiography. Invest Ophthalmol Vis Sci 61(2):35–35

    PubMed  PubMed Central  Google Scholar 

  39. Bonfiglio V, Ortisi E, Scollo D, Reibaldi M, Russo A, Pizzo A, Faro G, Macchi I, Fallico M, Toro MD, Rejdak R, Nowomiejska K, Toto L, Rinaldi M, Cillino S, Avitabile T, Longo A (2019) Vascular changes after vitrectomy for rhegmatogenous retinal detachment: optical coherence tomography angiography study. Acta Ophthalmol 98(5):e563–e569

    Google Scholar 

  40. Agarwal A, Aggarwal K, Akella M, Agrawal R, Khandelwal N, Bansal R, Singh R, Gupta V (2019) OCTA study group. Fractal dimension and optical coherence tomography angiography features of the central macula after repair of rhegmatogenous retinal detachments. Retina 39(11):2167–2177

    PubMed  Google Scholar 

  41. dell’Omo R, Viggiano D, Giorgio D, Filippelli M, Di Iorio R, Calo’ R, Cardone M, Rinaldi M, dell’Omo E, Costagliola C (2015) Restoration of foveal thickness and architecture after macula-off retinal detachment repair. Invest Ophthalmol Vis Sci 56(2):1040–1050

    PubMed  Google Scholar 

  42. Iandiev I, Uckermann O, Pannicke T, Wurm A, Tenckhoff S, Pietsch UC, Reichenbach A, Wiedemann P, Bringmann A, Uhlmann S (2006) Glial cell reactivity in a porcine model of retinal detachment. Invest Ophthalmol Vis Sci 47(5):2161–2171

    PubMed  Google Scholar 

  43. Gaucher D, Chiappore J-A, Pâques M, Simonutti M, Boitard C, Sahel JA, Massin P, Picaud S (2007) Microglial changes occur without neural cell death in diabetic retinopathy. Vision Res. 47(5):612–623

    PubMed  Google Scholar 

  44. Quintyn JC, Brasseur G (2004) Subretinal fluid in primary rhegmatogenous retinal detachment: physiopathology and composition. Surv Ophthalmol 49(1):96–108

    PubMed  Google Scholar 

  45. Francke M, Faude F, Pannicke T, Uckermann O, Weick M, Wolburg H, Wiedemann P, Reichenbach A, Uhlmann S, Bringmann A (2005) Glial cell-mediated spread of retinal degeneration during detachment: a hypothesis based upon studies in rabbits. Vision Res 45(17):2256–2267

    PubMed  Google Scholar 

  46. Friberg TR, Eller AW (1992) Prediction of visual recovery after scleral buckling of macula-off retinal detachments. Am J Ophthalmol 114(6):715–722

    CAS  PubMed  Google Scholar 

  47. Mervin K, Valter K, Maslim J, Lewis G, Fisher S, Stone J (1999) Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 128(2):155–164

    CAS  PubMed  Google Scholar 

  48. Nam SH, Kim K, Kim ES, Yu SY (2021) Longitudinal microvascular changes on optical coherence tomographic angiography after macula-off rhegmatogenous retinal detachment repair surgery. Ophthalmologica 244(1):34–41

    PubMed  Google Scholar 

  49. McKay KM, Vingopoulos F, Wang JC, Papakostas TD, Silverman RF, Marmalidou A, Lains I, Eliott D, Vavvas DG, Kim LA, Wu DM, Miller JB (2020) Retinal microvasculature changes after repair of macula-off retinal detachment assessed with optical coherence tomography angiography. Clin Ophthalmol. 14:1759–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Garrity ST, Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2017) Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(12):5548–5555. https://doi.org/10.1167/iovs.17-22036

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding or sponsorship was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole and have given their approval for this version to be published.

Corresponding author

Correspondence to Evita Evangelia Christou.

Ethics declarations

Conflict of interest

All authors report no conflicts of interest.

Ethical approval

This article is based on previously conducted studies and does not contain any studies with human participants or animals conducted by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christou, E.E., Stavrakas, P., Batsos, G. et al. Association of OCT-A characteristics with postoperative visual acuity after rhegmatogenous retinal detachment surgery: a review of the literature. Int Ophthalmol 41, 2283–2292 (2021). https://doi.org/10.1007/s10792-021-01777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01777-2

Keywords

Navigation