Skip to main content

Advertisement

Log in

Corneal endothelial status in different grades of late spontaneous in-the-bag IOL dislocation

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

 To evaluate corneal endothelial cell density (ECD) in the eyes with different grades of late spontaneous in-the-bag intraocular lens (IOL) dislocation.

Methods

 A prospective study included seventy-eight patients who applied for IOL dislocation. Overall 80 eyes were divided into four grades based on the in-the-bag IOL dislocation classification. All eyes underwent a complete ophthalmological examination. ECD was evaluated using in vivo corneal confocal microscopy.

Results

 Median corneal ECD was 1929 (1022–2958) cells/mm2 of all the patients. The lowest number of ECD was in grade 2 (grade 1 median ECD 1990.33 (1182–2425.33) cells/mm2, grade 2—1577.0 (1022–2958) cells/mm2, grade 3—2205.84 (1259–2807.67) cells/mm2 and grade 4—2072.17 (1045–2581.0) cells/mm2). A statistically significant difference was observed between the median of ECD of grade 2nd and 3rd (p = 0.023). By grouping cases into those with and without glaucoma, we found that corneal ECD was significantly lower in eyes with glaucoma compared with eyes without glaucoma in grades 3 and 4 (p < 0.05), while in other grades, the difference did not reach the significance level. We divided the corneal ECD of all eyes into two categories ≤ 1500 cells/mm2 and  > 1500 cells/mm2. Logistic regression demonstrated that the odds of having corneal ECD less than 1500 cells/mm2 increased by 3.5-fold if patients with IOL dislocation had been diagnosed with glaucoma previously.

Conclusion

 Late spontaneous in-the-bag IOL dislocation reduced corneal ECD. Previously diagnosed glaucoma was the most common comorbidity. This condition has a significant impact on corneal ECD for patients with IOL dislocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

*, ** Kruskal–Wallis test, p < 0.05

Fig. 4
Fig. 5

*,**,*** Kruskal–Wallis test, p < 0.05

Fig. 6

*Kruskal–Wallis test, p < 0.05

Fig. 7

*, **Kruskal–Wallis test, p < 0.05

Similar content being viewed by others

Data availability

The data that support the findings of the present study are available from the corresponding author upon reasonable request.

References

  1. Dabrowska-Kloda K, Kloda T, Boudiaf S et al (2015) Incidence and risk factors of late in-the-bag intraocular lens dislocation: evaluation of 140 eyes between 1992 and 2012. J Cataract Refract Surg 41:1376–1382. https://doi.org/10.1016/j.jcrs.2014.10.040

    Article  PubMed  Google Scholar 

  2. Østern AE, Sandvik GF, Drolsum L (2014) Late in-the-bag intraocular lens dislocation in eyes with pseudoexfoliation syndrome. Acta Ophthalmol 92:184–191. https://doi.org/10.1111/aos.12024

    Article  PubMed  Google Scholar 

  3. Jakobsson G, Zetterberg M, Lundström M et al (2010) Late dislocation of in-the-bag and out-of-the bag intraocular lenses: ocular and surgical characteristics and time to lens repositioning. J Cataract Refract Surg 36:1637–1644. https://doi.org/10.1016/j.jcrs.2010.04.042

    Article  PubMed  Google Scholar 

  4. Mönestam EI (2009) Incidence of dislocation of intraocular lenses and pseudophakodonesis 10 years after cataract surgery. Ophthalmology 116:2315–2320. https://doi.org/10.1016/j.ophtha.2009.05.015

    Article  PubMed  Google Scholar 

  5. Clark A, Morlet N, Ng JQ et al (2011) Whole population trends in complications of cataract surgery over 22 years in Western Australia. Ophthalmology 118:1055–1061. https://doi.org/10.1016/j.ophtha.2010.11.001

    Article  PubMed  Google Scholar 

  6. Ascaso FJ, Huerva V, Grzybowski A (2015) Epidemiology, etiology, and prevention of late IOL-capsular bag complex dislocation: review of the literature. J Ophthalmol 2015:1–7. https://doi.org/10.1155/2015/805706

    Article  Google Scholar 

  7. Schein OD, Cassard SD, Tielsch JM, Gower EW (2012) Cataract surgery among medicare beneficiaries. Ophthalmic Epidemiol 19:257–64. https://doi.org/10.3109/09286586.2012.698692

    Article  PubMed  PubMed Central  Google Scholar 

  8. Behndig A, Montan P, Stenevi U et al (2011) One million cataract surgeries: Swedish national cataract register 1992–2009. J Cataract Refract Surg 37:1539–1545. https://doi.org/10.1016/j.jcrs.2011.05.021

    Article  PubMed  Google Scholar 

  9. Lundström M, Goh PP, Henry Y et al (2015) The changing pattern of cataract surgery indications: a 5-year study of 2 cataract surgery databases. Ophthalmology 122:31–38. https://doi.org/10.1016/j.ophtha.2014.07.047

    Article  PubMed  Google Scholar 

  10. Gollogly HE, Hodge DO et al (2013) Increasing incidence of cataract surgery: population-based study. J Cataract Refract Surg 39:1383–1389. https://doi.org/10.1016/j.jcrs.2013.03.027

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grabska-Liberek I, Michalska-Małecka K, Więckowska B et al (2018) Incidence and characteristics of cataract surgery in poland, during 2010–2015. Int J Environ Res Public Health 15:435. https://doi.org/10.3390/ijerph15030435

    Article  PubMed Central  Google Scholar 

  12. Lansingh VC, Nano ME, Carter MJ et al (2014) Complexities and challenges of surgical data collection from cataract patients: comparison of cataract surgery rates between 2001 and 2008 in all provinces of Argentina. Arq Bras Oftalmol 77:25–29. https://doi.org/10.5935/0004-2749.20140008

    Article  PubMed  Google Scholar 

  13. Wang W, Yan W, Fotis K et al (2016) Cataract surgical rate and socioeconomics: a global study. Investig Ophthalmol Vis Sci 57:5872–5881. https://doi.org/10.1167/iovs.16-19894

    Article  Google Scholar 

  14. Sousa DC, Leal I, Faria MY, Pinto LA (2016) A Rare manifestation of uveitis-glaucoma-hyphema syndrome. J Curr glaucoma Pract 10:76–8. https://doi.org/10.5005/jp-journals-10008-1205

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shingleton BJ, Yang Y, O’Donoghue MW (2013) Management and outcomes of intraocular lens dislocation in patients with pseudoexfoliation. J Cataract Refract Surg 39:984–993. https://doi.org/10.1016/j.jcrs.2013.01.044

    Article  PubMed  Google Scholar 

  16. Zhang L, Hood CT, Vrabec JP et al (2014) Mechanisms for in-the-bag uveitis-glaucoma-hyphema syndrome. J Cataract Refract Surg 40:490–492. https://doi.org/10.1016/j.jcrs.2013.12.002

    Article  PubMed  Google Scholar 

  17. Kristianslund O, Råen M, Østern AE, Drolsum L (2017) Glaucoma and intraocular pressure in patients operated for late in-the-bag intraocular lens dislocation: a randomized clinical trial. Am J Ophthalmol 176:219–227. https://doi.org/10.1016/j.ajo.2017.01.026

    Article  PubMed  Google Scholar 

  18. Edelhauser HF (2006) The balance between corneal transparency and edema: the proctor lecture. Invest Ophthalmol Vis Sci 47:1754–67. https://doi.org/10.1167/iovs.05-1139

    Article  PubMed  Google Scholar 

  19. Hoffer KJ, Kraff MC (1980) Normal endothelial cell count range. Ophthalmology 87:861–866. https://doi.org/10.1016/S0161-6420(80)35149-X

    Article  CAS  PubMed  Google Scholar 

  20. Laing RA, Sandstrom MM, Berrospi AR, Leibowitz HM (1976) Changes in the corneal endothelium as a function of age. Exp Eye Res 22:587–594. https://doi.org/10.1016/0014-4835(76)90003-8

    Article  CAS  PubMed  Google Scholar 

  21. Hiles DA, Biglan AW, Fetherolf EC (1979) Central corneal endothelial cell counts in children. Am Intra-Ocular Implant Soc J 5:292–300. https://doi.org/10.1016/S0146-2776(79)80078-6

    Article  CAS  Google Scholar 

  22. Yee RW, Matsuda M, Schultz RO, Edelhauser HF (1985) Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res 4:671–678. https://doi.org/10.3109/02713688509017661

    Article  CAS  PubMed  Google Scholar 

  23. Laule A, Cable MK, Hoffman CE, Hanna C (1978) Endothelial cell population changes of human cornea during life. Arch Ophthalmol 96:2031–2035. https://doi.org/10.1001/archopht.1978.03910060419003

    Article  CAS  PubMed  Google Scholar 

  24. Nucci P, Brancato R, Mets MB, Shevell SK (1990) Normal endothelial cell density range in childhood. Arch Ophthalmol 108:247–248. https://doi.org/10.1001/archopht.1990.01070040099039

    Article  CAS  PubMed  Google Scholar 

  25. Møller-Pedersen T (1997) A comparative study of human corneal keratocyte and endothelial cell density during aging. Cornea 16:333–338

    PubMed  Google Scholar 

  26. Hoffer KJ (2017) Corneal endothelial cell density in children: normative data from birth to 5 years old. Am J Ophthalmol 178:186. https://doi.org/10.1016/j.ajo.2017.02.032

    Article  PubMed  Google Scholar 

  27. Elbaz U, Mireskandari K, Tehrani N et al (2017) Corneal endothelial cell density in children: normative data from birth to 5 years old. Am J Ophthalmol 173:134–138. https://doi.org/10.1016/j.ajo.2016.09.036

    Article  PubMed  Google Scholar 

  28. Zheng T, Le Q, Hong J, Xu J (2016) Comparison of human corneal cell density by age and corneal location: an in vivo confocal microscopy study. BMC Ophthalmol 16:1–10. https://doi.org/10.1186/s12886-016-0290-5

    Article  Google Scholar 

  29. Tomaszewski BT, Zalewska R, Mariak Z (2014) Evaluation of the endothelial cell density and the central corneal thickness in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. J Ophthalmol 2014:7. https://doi.org/10.1155/2014/123683

    Article  Google Scholar 

  30. Cho SW, Kim JM, Choi CY, Park KH (2009) Changes in corneal endothelial cell density in patients with normal-tension glaucoma. Jpn J Ophthalmol 53:569–573. https://doi.org/10.1007/s10384-009-0740-1

    Article  PubMed  Google Scholar 

  31. Alfawaz AM, Holland GN, Yu F et al (2016) Corneal endothelium in patients with anterior uveitis. Ophthalmology 123:1637–1645. https://doi.org/10.1016/j.ophtha.2016.04.036

    Article  PubMed  Google Scholar 

  32. Örnek N, Örnek K (2018) Corneal endothelial changes following a single session of selective laser trabeculoplasty for pseudoexfoliative glaucoma. Int Ophthalmol 38:2327–2333. https://doi.org/10.1007/s10792-017-0730-0

    Article  PubMed  Google Scholar 

  33. Østern AE, Drolsum L (2012) Corneal endothelial cells 6–7 years following cataract surgery in patients with pseudoexfoliation syndrome. Acta Ophthalmol 90:408–411. https://doi.org/10.1111/j.1755-3768.2010.02012.x

    Article  PubMed  Google Scholar 

  34. Lass JH, Benetz BA, Gal RL et al (2013) Donor age and factors related to endothelial cell loss 10 years after penetrating keratoplasty: Specular microscopy ancillary study. Ophthalmology 120:2428–2435. https://doi.org/10.1016/j.ophtha.2013.08.044

    Article  PubMed  Google Scholar 

  35. Lorente R, De Rojas V, Vazquez De Parga P et al (2010) Management of late spontaneous in-the-bag intraocular lens dislocation: retrospective analysis of 45 cases. J Cataract Refract Surg 36:1270–1282. https://doi.org/10.1016/j.jcrs.2010.01.035

    Article  PubMed  Google Scholar 

  36. Kristianslund O, Råen M, Østern AE, Drolsum L (2017) Late in-the-bag intraocular lens dislocation: a randomized clinical trial comparing lens repositioning and lens exchange. Ophthalmology 124:151–159. https://doi.org/10.1016/j.ophtha.2016.10.024

    Article  PubMed  Google Scholar 

  37. Davis D, Brubaker J, Espandar L et al (2009) Late in-the-bag spontaneous intraocular lens dislocation. evaluation of 86 consecutive cases. Ophthalmology 116:664–670. https://doi.org/10.1016/j.ophtha.2008.11.018

    Article  PubMed  Google Scholar 

  38. De Maria A, Wilmarth PA, David LL, Bassnett S (2017) Proteomic analysis of the bovine and human ciliary zonule. Investig Ophthalmol Vis Sci 58:573–585. https://doi.org/10.1167/iovs.16-20866

    Article  CAS  Google Scholar 

  39. Aliò JL, Anania A, Sagnelli P (2008) The aging of the human lens. In: Cavallotti CAP, Cerulli L (ed) Age-related changes of the human eye. Humana Press, Totowa, pp 61–131

    Chapter  Google Scholar 

  40. Eum SJ, Kim MJ, Kim HK (2016) A Comparison of Clinical Outcomes of Dislocated Intraocular Lens Fixation between In Situ Refixation and Conventional Exchange Technique Combined with Vitrectomy. J Ophthalmol 2016. https://doi.org/10.1155/2016/5942687

  41. Werner L, Zaugg B, Neuhann T et al (2012) In-the-bag capsular tension ring and intraocular lens subluxation or dislocation: a series of 23 cases. Ophthalmology 119:266–271. https://doi.org/10.1016/j.ophtha.2011.08.016

    Article  PubMed  Google Scholar 

  42. Streilein JW, Okamoto S, Sano Y, Taylor AW (2006) Neural control of ocular immune privilege. Ann N Y Acad Sci 917:297–306. https://doi.org/10.1111/j.1749-6632.2000.tb05396.x

    Article  Google Scholar 

  43. Mo JS, Anderson MG, Gregory M et al (2003) By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma. J Exp Med 197:1335–1344. https://doi.org/10.1084/jem.20022041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ibrahim O, Yagi-Yaguchi Y, Kakisu K et al (2019) Association of iris damage with reduction in corneal endothelial cell density after penetrating keratoplasty. Cornea 38:268–274. https://doi.org/10.1097/ICO.0000000000001819

    Article  PubMed  Google Scholar 

  45. Yazu H, Yamaguchi T, Tsubota K, Shimazaki J (2019) Clinical factors for rapid endothelial cell loss after corneal transplantation: novel findings from the aqueous humor. Curr Ophthalmol Rep 7:89–97. https://doi.org/10.1007/s40135-019-00204-1

    Article  Google Scholar 

  46. Yagi-Yaguchi Y, Yamaguchi T, Higa K et al (2017) Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-14131-3

    Article  CAS  Google Scholar 

  47. Bulnes BL, de Rojas Silva MV, Moore RL (2019) Intraocular pressure changes before and after surgery for spontaneous in-the-bag intraocular lens dislocation. J Cataract Refract Surg 45:305–311. https://doi.org/10.1016/j.jcrs.2018.10.038

    Article  PubMed  Google Scholar 

  48. Bryant TK, Feinberg EE, Peeler CE (2017) Uveitis-glaucoma-hyphema syndrome secondary to a soemmerring ring. J Cataract Refract Surg 43:985–987. https://doi.org/10.1016/j.jcrs.2017.07.002

    Article  PubMed  Google Scholar 

  49. Shingleton BJ, Neo YN, Cvintal V et al (2017) Outcome of phacoemulsification and intraocular lens implantion in eyes with pseudoexfoliation and weak zonules. Acta Ophthalmol 95:182–187. https://doi.org/10.1111/aos.13110

    Article  PubMed  Google Scholar 

  50. Østern AE, Sandvik GF, Drolsum L (2014) Positioning of the posterior intraocular lens in the longer term following cataract surgery in eyes with and without pseudoexfoliation syndrome. Acta Ophthalmol 92:253–258. https://doi.org/10.1111/aos.12025

    Article  PubMed  Google Scholar 

  51. Jakobsson G, Zetterberg M, Sundelin K, Stenevi U (2013) Surgical repositioning of intraocular lenses after late dislocation: complications, effect on intraocular pressure, and visual outcomes. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2013.06.023

    Article  PubMed  Google Scholar 

  52. Doors M, Berendschot TTJM, Webers CAB, Nuijts RMMA (2010) Model to predict endothelial cell loss after iris-fixated phakic intraocular lens implantation. Investig Ophthalmol Vis Sci 51:811–815. https://doi.org/10.1167/iovs.09-3981

    Article  Google Scholar 

  53. Janson BJ, Alward WL, Kwon YH et al (2018) Glaucoma-associated corneal endothelial cell damage: a review. Surv Ophthalmol 63:500–506. https://doi.org/10.1016/j.survophthal.2017.11.002

    Article  PubMed  Google Scholar 

  54. de Juan-Marcos L, Cabrillo-Estévez L, Escudero-Domínguez FA et al (2013) Morphometric changes of corneal endothelial cells in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Arch la Soc Española Oftalmol 88:439–444. https://doi.org/10.1016/j.oftale.2013.11.008

    Article  Google Scholar 

  55. Gagnon MM, Boisjoly HM, Brunette I, Charest MAM (1997) Corneal endothelial cell density in glaucoma. Cornea 16(3):314–318

    Article  CAS  Google Scholar 

  56. Sihota R, Lakshmaiah NC, Titiyal JS et al (2003) Corneal endothelial status in the subtypes of primary angle closure glaucoma. Clin Exp Ophthalmol 31:492–495. https://doi.org/10.1046/j.1442-9071.2003.00710.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Irena Nedzelskiene (Lithuanian University of Health Sciences, Medical Academy, Department of Dental and Oral Pathology) for help in statistical analysis and Audrius Liutkus for help in preparing illustrations.

Funding

The authors have no funding received for this work to disclose.

Author information

Authors and Affiliations

Authors

Contributions

RV and JV were involved in the design and conduct of the study, in the collection, management, analysis, and interpretation of data, and in preparation, review and final approval of the manuscript.

Corresponding author

Correspondence to Renata Vaiciuliene.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaiciuliene, R., Jasinskas, V. Corneal endothelial status in different grades of late spontaneous in-the-bag IOL dislocation. Int Ophthalmol 41, 1625–1634 (2021). https://doi.org/10.1007/s10792-021-01702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01702-7

Keywords

Navigation