Skip to main content

Advertisement

Log in

The impact of hybrid contact lenses on keratoconus progression after accelerated transepithelial corneal cross-linking

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of hybrid contact lenses (HCLs) on keratoconus (KCN) progression after accelerated transepithelial cross-linking (A-TE CXL).

Methods

Thirty-five eyes of 26 patients who preferred Ultrahealth HCLs for an optical correction after A-TE CXL formed the study group, and 45 eyes of 34 patients who preferred spectacle correction were age- and sex-matched to form the control group. Corrected distance visual acuity (CDVA), maximum keratometry, mean keratometry, apical posterior keratometry, cylindrical power, minimum corneal thickness, keratoconus vertex indices and curvature asymmetry indices obtained by Scheimpflug corneal topography were compared before, 6 and 12 months after the procedure. Anterior segment optic coherence tomography (AS-OCT) was performed to measure the apical corneal clearance of HCL-wearing patients.

Results

The median pre-CXL CDVA value of the patients in the HCL group was logMAR 0.30 (0.20–1.0), and it was logMAR 0.30 (0.10–1.0) in the spectacle-corrected group. There was a significant increase in CDVA 6 and 12 months after CXL procedure in both groups (p < 0.001, 0.003, respectively). The median front curve asymmetry index (FCAsym) significantly improved after A-TE CXL in the HCL group. The pre-CXL and 12th-month topographic comparisons of the spectacle-corrected group revealed no significant difference. In addition, no significant difference was observed between topographic alterations of two groups (p > 0.05).

Conclusion

The CDVA significantly improved, and KCN progression was halted in patients wearing HCL 12 months after A-TE CXL. Besides, FCAsym indices can be considered for follow-up of the HCL-wearing patients as an assistive parameter to AS-OCT measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The dataset is available and can be obtained from the corresponding author

References

  1. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS (2010) Keratoconus: a review. Contact Lens Anterior Eye 33:157–166

    Article  Google Scholar 

  2. Sorkin N, Varssano D (2014) Corneal collagen crosslinking: a systematic review. Ophthalmologica 232:10–27

    Article  CAS  Google Scholar 

  3. Wollensak G (2006) Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol 17:356–360

    Article  Google Scholar 

  4. Bilgin LK, Yilmaz Ş, Araz B et al (2009) 30 years of contact lens prescribing for keratoconic patients in Turkey. Contact Lens Anterior Eye 32:16–21. https://doi.org/10.1016/j.clae.2008.07.001

    Article  PubMed  Google Scholar 

  5. Jhanji V, Sharma N, Vajpayee RB (2011) Management of keratoconus: current scenario. Br J Ophthalmol 95:1044–1050

    Article  Google Scholar 

  6. Hashemi H, Shaygan N, Asgari S et al (2014) ClearKone-synergeyes or rigid gas-permeable contact lens in keratoconic patients: a clinical decision. Eye Contact Lens 40:95–98. https://doi.org/10.1097/ICL.0000000000000016

    Article  PubMed  Google Scholar 

  7. Carracedo G, González-Méijome JM, Lopes-Ferreira D et al (2014) Clinical performance of a new hybrid contact lens for keratoconus. Eye Contact Lens 40:2–6. https://doi.org/10.1097/ICL.0b013e3182a70ff2

    Article  PubMed  Google Scholar 

  8. Stapleton F, Chao C, Golebiowski B (2019) Topical review: effects of contact lens wear on corneal, conjunctival, and lid margin sensitivity. Optom Vis Sci 96:790–801. https://doi.org/10.1097/OPX.0000000000001429

    Article  PubMed  Google Scholar 

  9. Ladage PM, Yamamoto K, Li L et al (2002) Corneal epithelial homeostasis following daily and overnight contact lens wear. Contact Lens Anterior Eye 25:11–21. https://doi.org/10.1016/S1367-0484(01)00003-0

    Article  PubMed  Google Scholar 

  10. Ren DH, Petroll WM, Jester JV, Cavanagh HD (1999) The effect of rigid gas permeable contact lens wear on proliferation of rabbit corneal and conjunctival epithelial cells. CLAO J 25:136–141

    CAS  PubMed  Google Scholar 

  11. Macsai MS, Varley GA, Krachmer JH (1990) Development of keratoconus after contact lens wear: patient characteristics. Arch Ophthalmol 108:534–538. https://doi.org/10.1001/archopht.1990.01070060082054

    Article  CAS  PubMed  Google Scholar 

  12. Mcghee CNJ (2009) 2008 Sir Norman McAlister gregg lecture: 150 years of practical observations on the conical cornea—what have we learned? Clin Exp Ophthalmol 37:160–176. https://doi.org/10.1111/j.1442-9071.2009.02009.x

    Article  PubMed  Google Scholar 

  13. Rubinfeld RS, Caruso C, Ostacolo C (2019) Corneal cross-linking: the science beyond the myths and misconceptions. Cornea 38:780–790. https://doi.org/10.1097/ICO.0000000000001912

    Article  PubMed  Google Scholar 

  14. Wollensak G, Iomdina E (2009) Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol 87:48–51. https://doi.org/10.1111/j.1755-3768.2008.01190.x

    Article  PubMed  Google Scholar 

  15. Subasinghe SK, Ogbuehi KC, Dias GJ (2018) Current perspectives on corneal collagen crosslinking (CXL). Graefe’s Arch Clin Exp Ophthalmol 256:1363–1384. https://doi.org/10.1007/s00417-018-3966-0

    Article  CAS  Google Scholar 

  16. Eraslan M, Toker E, Cerman E, Ozarslan D (2017) Efficacy of epithelium-off and epithelium-on corneal collagen cross-linking in pediatric keratoconus. Eye Contact Lens 43:155–161. https://doi.org/10.1097/ICL.0000000000000255

    Article  PubMed  Google Scholar 

  17. Ziaei M, Vellara H, Gokul A et al (2019) Prospective 2-year study of accelerated pulsed transepithelial corneal crosslinking outcomes for Keratoconus. Eye 33:1897–1903. https://doi.org/10.1038/s41433-019-0502-3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sehra SV, Titiyal JS, Sharma N et al (2014) Change in corneal microstructure with rigid gas permeable contact lens use following collagen cross-linking: an in vivo confocal microscopy study. Br J Ophthalmol 98:442–447. https://doi.org/10.1136/bjophthalmol-2013-303934

    Article  PubMed  Google Scholar 

  19. Visser ES, Soeters N, Tahzib NG (2015) Scleral lens tolerance after corneal cross-linking for keratoconus. Optom Vis Sci 92:318–323. https://doi.org/10.1097/OPX.0000000000000515

    Article  PubMed  Google Scholar 

  20. Liu Z, Pflugfelder SC (2000) The effects of long-term contact lens wear on corneal. Ophthalmology 107:105–111. https://doi.org/10.1016/S0161-6420(99)00027-5

    Article  CAS  PubMed  Google Scholar 

  21. Kallinikos P, Efron N (2004) On the etiology of keratocyte loss during contact lens wear. Investig Ophthalmol Vis Sci 45:3011–3020. https://doi.org/10.1167/iovs.04-0129

    Article  Google Scholar 

  22. Acar BT, Vural ET, Acar S (2012) Effects of contact lenses on the ocular surface in patients with keratoconus: piggyback versus clearkone hybrid lenses. Eye Contact Lens 38:43–48. https://doi.org/10.1097/ICL.0b013e31823ff181

    Article  PubMed  Google Scholar 

  23. Walker MK, Lema C, Redfern R (2020) Scleral lens wear: measuring inflammation in the fluid reservoir. Contact Lens Anterior Eye. https://doi.org/10.1016/j.clae.2020.02.017

    Article  PubMed  Google Scholar 

  24. Jalbert I, Stapleton F (1999) Effect of lens wear on corneal stroma: preliminary findings. Aust N Z J Ophthalmol 27:211–213. https://doi.org/10.1046/j.1440-1606.1999.00205.x

    Article  CAS  PubMed  Google Scholar 

  25. Ramdas WD, Vervaet CJWC (2014) Progression of keratoconus in patients wearing pancorneal toric edge rigid gas-permeable contact lenses. Contact Lens Anterior Eye 37:251–256. https://doi.org/10.1016/j.clae.2013.11.012

    Article  PubMed  Google Scholar 

  26. Fernandez-Velazquez FJ (2011) Severe epithelial edema in clearkone synergeyes contact lens wear for keratoconus. Eye Contact Lens 37:381–385. https://doi.org/10.1097/ICL.0b013e31822a33a6

    Article  PubMed  Google Scholar 

  27. Pilskalns B, Fink BA, Hill RM (2007) Oxygen demands with hybrid contact lenses. Optom Vis Sci 84:334–342. https://doi.org/10.1097/OPX.0b013e3180421748

    Article  PubMed  Google Scholar 

  28. Tellouck J, Touboul D, Santhiago MR et al (2016) Evolution profiles of different corneal parameters in progressive keratoconus. Cornea 35:807–813. https://doi.org/10.1097/ICO.0000000000000833

    Article  PubMed  Google Scholar 

  29. Severinsky B, Fadel D, Davelman J, Moulton E (2019) Effect of scleral lenses on corneal topography in keratoconus: a case series of cross-linked versus non-cross-linked eyes. Cornea 38:986–991. https://doi.org/10.1097/ICO.0000000000002008

    Article  PubMed  Google Scholar 

  30. Koppen C, Gobin L, Mathysen D et al (2011) Influence of contact lens wear on the results of ultraviolet A/riboflavin cross-linking for progressive keratoconus. Br J Ophthalmol 95:1402–1405. https://doi.org/10.1136/bjophthalmol-2011-300329

    Article  PubMed  Google Scholar 

  31. Serramito-Blanco M, Carpena-Torres C, Carballo J et al (2019) Anterior corneal curvature and aberration changes after scleral lens wear in keratoconus patients with and without ring segments. Eye Contact Lens 45:141–148. https://doi.org/10.1097/ICL.0000000000000534

    Article  PubMed  Google Scholar 

  32. Soeters N, Visser ES, Imhof SM, Tahzib NG (2015) Scleral lens influence on corneal curvature and pachymetry in keratoconus patients. Contact Lens Anterior Eye 38:294–297. https://doi.org/10.1016/j.clae.2015.03.006

    Article  PubMed  Google Scholar 

  33. Wittig-Silva C, Whiting M, Lamoureux E et al (2008) A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg 24:720–725. https://doi.org/10.3928/1081597X-20080901-15

    Article  Google Scholar 

  34. Koller T, Iseli HP, Hafezi F et al (2009) Scheimpflug imaging of corneas after collagen cross-linking. Cornea 28:510–515. https://doi.org/10.1097/ICO.0b013e3181915943

    Article  PubMed  Google Scholar 

  35. Kanellopoulos AJ, Moustou V, Asimellis G (2013) Evaluation of visual acuity, pachymetry and anterior-surface irregularity in keratoconus and crosslinking intervention follow-up in 737 cases. Int J Keratoconus Ectatic Corneal Dis 2:95–103. https://doi.org/10.5005/jp-journals-10025-1060

    Article  Google Scholar 

  36. Kosekahya P, Caglayan M, Koc M et al (2019) Longitudinal evaluation of the progression of keratoconus using a novel progression display. Eye Contact Lens 45:324–330. https://doi.org/10.1097/ICL.0000000000000582

    Article  PubMed  Google Scholar 

  37. Xia Y, Chai X, Zhou C, Ren Q (2011) Corneal nerve morphology and sensitivity changes after ultraviolet A/riboflavin treatment. Exp Eye Res 93:541–547. https://doi.org/10.1016/j.exer.2011.06.021

    Article  CAS  PubMed  Google Scholar 

  38. Wasilewski D, Mello GHR, Moreira H (2013) Impact of collagen crosslinking on corneal sensitivity in keratoconus patients. Cornea 32:899–902. https://doi.org/10.1097/ICO.0b013e31827978c8

    Article  PubMed  Google Scholar 

  39. Cifariello F, Minicucci M, Di Renzo F et al (2018) Epi-off versus Epi-on corneal collagen cross-linking in keratoconus patients: a comparative study through 2-year follow-up. J Ophthalmol. https://doi.org/10.1155/2018/4947983

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No financial support was received for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Gökhan Aslan.

Ethics declarations

Conflict of interest

The authors report no potential conflict of interest relevant to this article.

Ethical approval

Recep Tayyip Erdoğan University ethical committee approval (IRB No: 40465587-050.01.04-49) was granted prior to the study, and researchers participating in the study were assured to follow the tenets of the Declaration of Helsinki.

Consent to participate

Written consent was obtained from all participants and/or their parents.

Consent for publication

Written consent was obtained from all participants and/or their parents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, M.G., Fındık, H., Okutucu, M. et al. The impact of hybrid contact lenses on keratoconus progression after accelerated transepithelial corneal cross-linking. Int Ophthalmol 41, 45–55 (2021). https://doi.org/10.1007/s10792-020-01551-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01551-w

Keywords

Navigation