Skip to main content

Advertisement

Log in

Retrobulbarly injecting nerve growth factor attenuates visual impairment in streptozotocin-induced diabetes rats

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To explore whether retrobulbar administration of nerve growth factor (NGF) can restore visual function of streptozotocin-induced diabetes rats.

Methods

A high-sucrose/high-fat diet and single injection of streptozotocin (STZ) were used in modeling diabetes. During week 13–15 after STZ injection, diabetic rats were received retrobulbar βNGF injection. On week 17 after STZ injection, the rats were tested with flash visual evoked potential (FVEP) to reflect visual function and with both optical coherence tomography (OCT) and hematoxylin and eosin (H&E) staining to show retinal morphological changes. Furthermore, periodic acid-Schiff (PAS) staining for retinal vascular digest preparations was performed to investigate retinal microvascular alterations, and immunofluorescences for slides of the optic nerve or retina were checked to assess astrocyte activation, autophagy level, and the unfolded protein response (UPR).

Results

Retrobulbar βNGF injection significantly improved FVEP of diabetic rats. It also significantly alleviated retinal ganglion cell (RGC) loss and scarcely elicited other retinal/microvascular morphological changes, in OCT, H&E staining, and microvascular preparation. Moreover when diabetes rats treated with NGF, immunostaining of the optic nerve showed downregulation of complement 3d (C3d) and upregulations of glial fibrillary acidic protein (GFAP), S100-A10, microtubule-associated proteins 1A/1B light chain 3b (LC3b), and activating transcription factor 4 (ATF-4), while immunostaining of the retina showed upregulation of LC3b and no expression of ATF-4.

Conclusion

Our findings demonstrate that retrobulbar administration of βNGF reduces visual impairment with RGC-loss attenuation and without retinal-microvascular morphological alteration in diabetic rats. Furthermore, enhancements of A2 astrocyte activation, autophagy-protein expression, and ATF-4-mediated UPR may play crucial roles in the protective mechanism of NGF in diabetic visual-pathway neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Chokroverty S, Seiden D, Navidad P, Cody R (1988) Distal axonopathy in streptozotocin diabetes in rats. Experientia 44(5):444–446. https://doi.org/10.1007/BF01940542

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez DC, Pasquini LA, Dorfman D, Aldana Marcos HJ, Rosenstein RE (2012) Early distal axonopathy of the visual pathway in experimental diabetes. Am J Pathol 180(1):303–313. https://doi.org/10.1016/j.ajpath.2011.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sima AA, Zhang WX, Cherian PV, Chakrabarti S (1992) Impaired visual evoked potential and primary axonopathy of the optic nerve in the diabetic BB/W-rat. Diabetologia 35(7):602–607. https://doi.org/10.1007/BF00400249

    Article  CAS  PubMed  Google Scholar 

  4. Simó R, Hernández C (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metabolism 25(1):23–33. https://doi.org/10.1016/j.tem.2013.09.005

    Article  CAS  Google Scholar 

  5. Vines K, Li R, Geetha T, Broderick TL, Carroll CC, Babu JR (2019) Nerve growth factor receptor TrkA signaling in streptozotocin-induced type 1 diabetes rat brain. Biochem Biophys Rese Commun 514(4):1285–1289. https://doi.org/10.1016/j.bbrc.2019.04.162

    Article  CAS  Google Scholar 

  6. Garcia TB, Hollborn M, Bringmann A (2017) Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev 34:43–57. https://doi.org/10.1016/j.cytogfr.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  7. Mysona BA, Shanab AY, Elshaer SL, El-Remessy AB (2014) Nerve growth factor in diabetic retinopathy: beyond neurons. Expert Rev Ophthalmol 9(2):99–107. https://doi.org/10.1586/17469899.2014.903157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seo S, Mathison A, Grzenda A, Podratz J, Calvo E, Brimijoin S, Windebank A, Iovanna J, Lomberk G, Urrutia R (2018) Mechanisms underlying the regulation of HP1γ by the NGF-PKA signaling pathway. Sci Reports 8(1):15077. https://doi.org/10.1038/s41598-018-33475-y

    Article  CAS  Google Scholar 

  9. Xia B, Lv Y (2018) Dual-delivery of VEGF and NGF by emulsion electrospun nanofibrous scaffold for peripheral nerve regeneration. Mater Sci Eng C Mater Biol Appl 82:253–264. https://doi.org/10.1016/j.msec.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  10. Elshaer SL, Alwhaibi A, Mohamed R, Lemtalsi T, Coucha M, Longo FM, El-Remessy AB (2019) Modulation of the p75 neurotrophin receptor using LM11A-31 prevents diabetes-induced retinal vascular permeability in mice via inhibition of inflammation and the RhoA kinase pathway. Diabetologia 62(8):1488–1500. https://doi.org/10.1007/s00125-019-4885-2

    Article  CAS  PubMed  Google Scholar 

  11. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H (2015) NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 85(1):101–115. https://doi.org/10.1016/j.neuron.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  12. Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, Li F, Xu Z, Bowser R, Xia X-G, Zhou H (2013) Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci USA 110(10):4069–4074. https://doi.org/10.1073/pnas.1218497110

    Article  PubMed  Google Scholar 

  13. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo P, Liu D, Li C, He WX, Zhang CL, Chang MJ (2018) Enteric glial cell activation protects enteric neurons from damage due to diabetes in part via the promotion of neurotrophic factor release. Neurogastroenterol Motil 30(10):e13368. https://doi.org/10.1111/nmo.13368

    Article  CAS  PubMed  Google Scholar 

  15. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  16. Neal M, Luo J, Harischandra DS, Gordon R, Sarkar S, Jin H, Anantharam V, Desaubry L, Kanthasamy A, Kanthasamy A (2018) Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia 66(10):2137–2157. https://doi.org/10.1002/glia.23467

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative Med Cellular Longevity 2014:102158. https://doi.org/10.1155/2014/102158

    Article  CAS  Google Scholar 

  18. Bhattacharya D, Mukhopadhyay M, Bhattacharyya M, Karmakar P (2018) Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J 17:709–720. https://doi.org/10.17179/excli2018-1353

    Article  PubMed  PubMed Central  Google Scholar 

  19. Park H-YL, Kim JH, Park CK (2018) Different contributions of autophagy to retinal ganglion cell death in the diabetic and glaucomatous retinas. Sci Reports 8(1). https://doi.org/10.1038/s41598-018-30165-7

  20. Wang XS, Yue J, Hu LN, Tian Z, Zhang K, Yang L, Zhang HN, Guo YY, Feng B, Liu HY, Wu YM, Zhao MG, Liu SB (2020) Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes. Glia 68(1):27–43. https://doi.org/10.1002/glia.23697

    PubMed  Google Scholar 

  21. Hong Y, Liu Y, Yu D, Wang M, Hou Y (2019) The neuroprotection of progesterone against Abeta-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. Glia 74:105669. https://doi.org/10.1002/glia.2369710.1016/j.intimp.2019.05.054

    Article  CAS  Google Scholar 

  22. Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14(7):1164–1184. https://doi.org/10.1080/15548627.2018.1458173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69(2):169–181. https://doi.org/10.1016/j.molcel.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  24. B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A (2013) The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41(16):7683–7699. https://doi.org/10.1093/nar/gkt563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H-J, Pan Y-B, Sun Z-L, Sun Y-Y, Yang X-T, Feng D-F (2018) Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush. Neuropharmacology 137:33–49. https://doi.org/10.1016/j.neuropharm.2018.04.028

    Article  CAS  PubMed  Google Scholar 

  26. Dietrich N, Hammes HP (2012) Retinal digest preparation: a method to study diabetic retinopathy. Methods Molecular Biol 933:291–302. https://doi.org/10.1007/978-1-62703-068-7_19

    Article  CAS  Google Scholar 

  27. Mesentier-Louro LA, Rosso P, Carito V, Mendez-Otero R, Santiago MF, Rama P, Lambiase A, Tirassa P (2019) Nerve growth factor role on retinal ganglion cell survival and axon regrowth: effects of ocular administration in experimental model of optic nerve injury. Molecular Neurobiol 56(2):1056–1069. https://doi.org/10.1007/s12035-018-1154-1

    Article  CAS  Google Scholar 

  28. Sabanayagam C, Banu R, Chee ML, Lee R, Wang YX, Tan G, Jonas JB, Lamoureux EL, Cheng C-Y, Klein BEK, Mitchell P, Klein R, Cheung CMG, Wong TY (2019) Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol 7(2):140–149. https://doi.org/10.1016/S2213-8587(18)30128-1

    Article  PubMed  Google Scholar 

  29. Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20(26):3218–3225. https://doi.org/10.2174/09298673113209990022

    Article  CAS  PubMed  Google Scholar 

  30. Knecht PB, Michels S, Sturm V, Bosch MM, Menke MN (2009) Tunnelled versus straight intravitreal injection: intraocular pressure changes, vitreous reflux, and patient discomfort. Retina 29(8):1175–1181. https://doi.org/10.1097/IAE.0b013e3181aade74

    Article  PubMed  Google Scholar 

  31. Rosa MD, Distefano G, Gagliano C, Rusciano D, Malaguarnera L (2016) Autophagy in diabetic retinopathy. Curr Neuropharmacol 14(8):810–825. https://doi.org/10.2174/1570159x14666160321122900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sung K, Jimenez-Sanchez M (2020) Autophagy in astrocytes and its implications in neurodegeneration. J Molecular Biol 432(8):2605–2621. https://doi.org/10.1016/j.jmb.2019.12.041

    Article  CAS  Google Scholar 

  33. Yang J, Carra S, Zhu WG, Kampinga HH (2013) The regulation of the autophagic network and its implications for human disease. Int J Biol Sci 9(10):1121–1133. https://doi.org/10.7150/ijbs.6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Pro. Jian-Su Chen for her expert assistance.

Funding

Supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 2019zzts368), and by Project of Changsha Science and Technology Bureau (No. KH180123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Chang Wang.

Ethics declarations

Conflicts of interest

No conflicts of interest were disclosed.

Ethical approval

The animal research was approved by the Animal Welfare and Ethics Committee of Central South University and was conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QC., Sheng, W., Yi, CJ. et al. Retrobulbarly injecting nerve growth factor attenuates visual impairment in streptozotocin-induced diabetes rats. Int Ophthalmol 40, 3501–3511 (2020). https://doi.org/10.1007/s10792-020-01537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01537-8

Keywords

Navigation