Skip to main content

Advertisement

Log in

Repeatability of ocular biometry with IOLMaster 700 in subjects with clear lens

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to assess the reproducibility of ocular biometry using the IOLMaster-700 in a healthy population.

Methods

This is a prospective, cross-sectional, observational reproducibility study. Ocular biometry was performed three times on each of 45 studied eyes. Flattest meridian (Kf) and the steepest meridian (Ks), central corneal thickness, axial length, anterior chamber depth, aqueous depth, lens thickness, and white-to-white distances were recorded. Reproducibility was evaluated using the coefficient of variation (CV), the within subject standard deviation, and the intraclass correlation coefficient (ICC).

Results

There was a high reproducibility in all parameters; CV was between 0.3 and 1 %, and the ICC was higher than 0.87 in all measurements.

Conclusions

IOLMaster-700 showed high reproducibility for ocular biometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng YF, Wang DD, Zhao YE, Li JH, Savini G, Huang JH (2013) Surgical management of malignant glaucoma with white cataract in nanophthalmos. J Cataract Refract Surg 39(11):1774–1777. doi:10.1016/j.jcrs.2013.08.016

    Article  PubMed  Google Scholar 

  2. Jung KI, Yang JW, Lee YC, Kim SY (2012) Cataract surgery in eyes with nanophthalmos and relative anterior microphthalmos. Am J Ophthalmol 153(6):1161–1168. doi:10.1016/j.ajo.2011.12.006

    Article  PubMed  Google Scholar 

  3. Kaswin G, Rousseau A, Mgarrech M, Barreau E, Labetoulle M (2014) Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard. J Cataract Refract Surg 40(4):593–600. doi:10.1016/j.jcrs.2013.09.015

    Article  PubMed  Google Scholar 

  4. Srivannaboon S, Chirapapaisan C, Chonpimai P, Koodkaew S (2014) Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. J Cataract Refract Surg 40(5):709–715

    Article  PubMed  Google Scholar 

  5. Shen P, Zheng Y, Ding X, Liu B, Congdon N, Morgan I, He M (2013) Biometric measurements in highly myopic eyes. J Cataract Refract Surg 39(2):180–187

    Article  PubMed  Google Scholar 

  6. Rončević MB, Bušić M, Čima I, Elabjer BK, Bosnar D, Miletić D (2011) Comparison of optical low-coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation. Graefe’s Arch Clin Exp Ophthalmol 249(1):69–75

    Article  Google Scholar 

  7. Nakhli FR (2014) Comparison of optical biometry and applanation ultrasound measurements of the axial length of the eye. Saudi J Ophthalmol 28(4):287–291

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alio JL, Grzybowski A, El Aswad A, Romaniuk D (2014) Refractive lens exchange. Surv Ophthalmol 59(6):579–598. doi:10.1016/j.survophthal.2014.04.004

    Article  PubMed  Google Scholar 

  9. Hua X, Yuan XY, Song H, Tang X (2013) Long-term results of clear lens extraction combined with piggyback intraocular lens implantation to correct high hyperopia. Int J Ophthalmol 6(5):650–655. doi:10.3980/j.issn.2222-3959.2013.05.18

    PubMed  PubMed Central  Google Scholar 

  10. Moyal L, Abrieu-Lacaille M, Bonnel S, Sendon D, de Rivoyre B, Berguiga M, Rambaud C, Froussart-Maille F, Rigal-Sastourne JC (2015) Comparison of two different surgical treatments of presbyopia for hyperopic patients over 55 years old: Presbylasik (Supracor) and Prelex (presbyopic lens exchange). J Fr Ophtalmol 38(4):306–315. doi:10.1016/j.jfo.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  11. Brown RH, Zhong L, Lynch MG (2014) Clear lens extraction as treatment for uncontrolled primary angle-closure glaucoma. J Cataract Refract Surg 5(40):840–841

    Article  Google Scholar 

  12. Man X, Chan NC, Baig N, Kwong YY, Leung DY, Li FC, Tham CC (2015) Anatomical effects of clear lens extraction by phacoemulsification versus trabeculectomy on anterior chamber drainage angle in primary angle-closure glaucoma (PACG) patients. Graefe’s Arch Clin Exp Ophthalmol 253(5):773–778

    Article  Google Scholar 

  13. Mittal V, Mittal R, Maheshwari R (2014) Combined endothelial keratoplasty and clear lens extraction for corneal decompensation in irido-corneal endothelial syndrome. Indian J Ophthalmol 62(5):651–653. doi:10.4103/0301-4738.118435

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rao A (2013) Clear lens extraction in plateau iris with bilateral acute angle closure in young. J Glaucoma 22(9):e31–e32. doi:10.1097/IJG.0b013e31825c10c4

    Article  PubMed  Google Scholar 

  15. Taketani F, Matuura T, Yukawa E, Hara Y (2004) Influence of intraocular lens tilt and decentration on wavefront aberrations. J Cataract Refract Surg 30(10):2158–2162. doi:10.1016/j.jcrs.2004.02.072

    Article  PubMed  Google Scholar 

  16. Oshika T, Sugita G, Miyata K, Tokunaga T, Samejima T, Okamoto C, Ishii Y (2007) Influence of tilt and decentration of scleral-sutured intraocular lens on ocular higher-order wavefront aberration. Br J Ophthalmol 91(2):185–188. doi:10.1136/bjo.2006.099945

    Article  CAS  PubMed  Google Scholar 

  17. Korynta J, Bok J, Cendelin J, Michalova K (1999) Computer modeling of visual impairment caused by intraocular lens misalignment. J Cataract Refract Surg 25(1):100–105

    Article  CAS  PubMed  Google Scholar 

  18. Olsen T, Hoffmann P (2014) C constant: new concept for ray tracing-assisted intraocular lens power calculation. J Cataract Refract Surg 40(5):764–773. doi:10.1016/j.jcrs.2013.10.037

    Article  PubMed  Google Scholar 

  19. Al-Refaie A, Bata N (2010) Evaluating measurement and process capabilities by GR&R with four quality measures. Measurement 43(6):842–851

    Article  Google Scholar 

  20. Senol S (2004) Measurement system analysis using designed experiments with minimum α–β Risks and n. Measurement 36(2):131–141

    Article  Google Scholar 

  21. Nongpiur ME, He M, Amerasinghe N, Friedman DS, Tay WT, Baskaran M, Smith SD, Wong TY, Aung T (2011) Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology 118(3):474–479. doi:10.1016/j.ophtha.2010.07.025

    Article  PubMed  Google Scholar 

  22. Grulkowski I, Liu JJ, Zhang JY, Potsaid B, Jayaraman V, Cable AE, Duker JS, Fujimoto JG (2013) Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology 120(11):2184–2190. doi:10.1016/j.ophtha.2013.04.007

    Article  PubMed  Google Scholar 

  23. Lopez de la Fuente C, Sanchez-Cano A, Segura F, Pinilla I (2014) Comparison of anterior segment measurements obtained by three different devices in healthy eyes. BioMed Res Int 2014

  24. Gonvers M, Bornet C, Othenin-Girard P (2003) Implantable contact lens for moderate to high myopia: relationship of vaulting to cataract formation. J Cataract Refract Surg 29(5):918–924

    Article  PubMed  Google Scholar 

  25. Zaldivar R, Davidorf JM, Oscherow S (1998) Posterior chamber phakic intraocular lens for myopia of -8 to -19 diopters. J Refract Surg 14(3):294–305

    CAS  PubMed  Google Scholar 

  26. Alfonso JF, Lisa C, Palacios A, Fernandes P, Gonzalez-Meijome JM, Montes-Mico R (2009) Objective vs subjective vault measurement after myopic implantable collamer lens implantation. Am J Ophthalmol 147(6):978–983. doi:10.1016/j.ajo.2009.01.006

    Article  PubMed  Google Scholar 

  27. Martin R, Ortiz S, Rio-Cristobal A (2013) White-to-white corneal diameter differences in moderately and highly myopic eyes: partial coherence interferometry versus scanning-slit topography. J Cataract Refract Surg 39(4):585–589. doi:10.1016/j.jcrs.2012.11.021

    Article  PubMed  Google Scholar 

  28. De la Parra-Colín P, Garza-León M, Barrientos-Gutierrez T (2014) Repeatability and comparability of anterior segment biometry obtained by the Sirius and the Pentacam analyzers. Int Ophthalmol 34(1):27–33

    Article  PubMed  Google Scholar 

  29. Bao F, Wang Q, Cheng S, Savini G, Lu W, Feng Y, Yu Y, Huang J (2014) Comparison and evaluation of central corneal thickness using 2 new noncontact specular microscopes and conventional pachymetry devices. Cornea 33(6):576–581

    Article  PubMed  Google Scholar 

  30. Huang J, Liao N, Savini G, Li Y, Bao F, Yu Y, Yu A, Wang Q (2015) Measurement of central corneal thickness with optical low-coherence reflectometry and ultrasound pachymetry in normal and post-femtosecond laser in situ keratomileusis eyes. Cornea 34(2):204–208. doi:10.1097/ICO.0000000000000329

    Article  PubMed  Google Scholar 

  31. Murdoch IE, Morris SS, Cousens SN (1998) People and eyes: statistical approaches in ophthalmology. Br J Ophthalmol 82(8):971–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karakosta A, Vassilaki M, Plainis S, Elfadl NH, Tsilimbaris M, Moschandreas J (2012) Choice of analytic approach for eye-specific outcomes: one eye or two? Am J Ophthalmol 153(3):571–579. doi:10.1016/j.ajo.2011.08.032

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the engineers Roberto Reza Nuñez and Manuel Reza Garza for their help in the statistical analysis done in this study.

Funding

The author received no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Garza-Leon.

Ethics declarations

Conflict of interest

The author has no financial interest in any of the devices used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garza-Leon, M., Fuentes-de la Fuente, H.A. & García-Treviño, A.V. Repeatability of ocular biometry with IOLMaster 700 in subjects with clear lens. Int Ophthalmol 37, 1133–1138 (2017). https://doi.org/10.1007/s10792-016-0380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0380-7

Keywords

Navigation