Skip to main content
Log in

Celecoxib attenuates hindlimb unloading-induced muscle atrophy via suppressing inflammation, oxidative stress and ER stress by inhibiting STAT3

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Improving inflammation may serve as useful therapeutic interventions for the hindlimb unloading-induced disuse muscle atrophy. Celecoxib is a selective non-steroidal anti-inflammatory drug. We aimed to determine the role and mechanism of celecoxib in hindlimb unloading-induced disuse muscle atrophy. Celecoxib significantly attenuated the decrease in soleus muscle mass, hindlimb muscle function and the shift from slow- to fast-twitch muscle fibers caused by hindlimb unloading in rats. Importantly, celecoxib inhibited the increased expression of inflammatory factors, macrophage infiltration in damaged soleus muscle. Mechanistically, Celecoxib could significantly reduce oxidative stress and endoplasmic reticulum stress in soleus muscle of unloaded rats. Furthermore, celecoxib inhibited muscle proteolysis by reducing the levels of MAFbx, MuRF1, and autophagy related proteins maybe by inhibiting the activation of pro-inflammatory STAT3 pathway in vivo and in vitro. This study is the first to demonstrate that celecoxib can attenuate disuse muscle atrophy caused by hindlimb unloading via suppressing inflammation, oxidative stress and endoplasmic reticulum stress probably, improving target muscle function and reversing the shift of muscle fiber types by inhibiting STAT3 pathways-mediated inflammatory cascade. This study not only enriches the potential molecular regulatory mechanisms, but also provides new potential therapeutic targets for disuse muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Chen H, Qian Z, Zhang S, Tang J, Fang L, Jiang F, Ge D, Chang J, Cao J, Yang L et al (2021) Silencing COX-2 blocks PDK1/TRAF4-induced AKT activation to inhibit fibrogenesis during skeletal muscle atrophy. Redox Biol 38:101774

    Article  PubMed  Google Scholar 

  • Cheng H, Huang H, Guo Z, Chang Y, Li Z (2021) Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 11:8836–8854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Yang H, Gu Y, Zong C, Chen X, Lin Y, Sun H, Shen Y, Zhu J (2020) RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. Ann Transl Med 8:1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desaphy JF, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, Dinardo MM, Camerino GM, Ricciuti P, Brocca L, Pellegrino MA et al (2010) Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res 61:553–563

    Article  CAS  PubMed  Google Scholar 

  • Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29:1669–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggelbusch M, Shi A, Broeksma BC, Vazquez-Cruz M, Soares MN, de Wit GMJ, Everts B, Jaspers RT, Wust RCI (2022) The nlrp3 inflammasome contributes to inflammation-induced morphological and metabolic alterations in skeletal muscle. J Cachexia Sarcopenia Muscle 13:3048–3061

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW, Lin CL, Lo YC (2021) Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-kappaB/TNF-alpha and regulating protein synthesis/degradation pathway. Br J Pharmacol 178:2998–3016

    Article  CAS  PubMed  Google Scholar 

  • Farooq F, Abadia-Molina F, MacKenzie D, Hadwen J, Shamim F, O’Reilly S, Holcik M, MacKenzie A (2013) Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum Mol Genet 22:3415–3424

    Article  CAS  PubMed  Google Scholar 

  • Franco-Romero A, Sandri M (2021) Role of autophagy in muscle disease. Mol Aspects Med 82:101041

    Article  CAS  PubMed  Google Scholar 

  • Gallot YS, Bohnert KR (2021) Confounding roles of ER stress and the unfolded protein response in skeletal muscle atrophy. Int J Mol Sci 22:2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Zhang G, Zhang Z, Zhu JZ, Li L, Zhou Y, Rodney GG Jr, Abo-Zahrah RS, Anderson L, Garcia JM et al (2022) Ubr2 targets myosin heavy chain IIb and IIx for degradation: molecular mechanism essential for cancer-induced muscle wasting. Proc Natl Acad Sci USA 119:e2200215119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Jamett A, Vasquez W, Cifuentes-Riveros G, Martinez-Pando R, Saez JC, Cardenas AM (2022) Oxidative stress, inflammation and connexin hemichannels in muscular dystrophies. Biomedicines 10:507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guadagnin E, Mazala D, Chen YW (2018) Stat3 in skeletal muscle function and disorders. Int J Mol Sci 19:2265

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Zhong L, Zhu J, Xu H, Ma W, Zhang L, Shen Y, Law BY, Ding F, Gu X et al (2020) Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Ann Transl Med 8:1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Li M, Deng C, Qiu J, Wang K, Chang M, Zhou S, Gu Y, Shen Y, Wang W et al (2022) Potential therapeutic strategies for skeletal muscle atrophy. Antioxidants 12:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Li M, Chang M, Liu R, Qiu J, Wang K, Deng C, Shen Y, Zhu J, Wang W et al (2022) Inflammation: roles in skeletal muscle atrophy. Antioxidants 11:1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneguchi A, Umehara T, Yamaoka K, Ozawa J (2022) Bilateral muscle atrophy after anterior cruciate ligament reconstruction in rats: protective effects of anti-inflammatory drug celecoxib. Knee 35:201–212

    Article  PubMed  Google Scholar 

  • Krasselt M, Baerwald C (2019) Celecoxib for the treatment of musculoskeletal arthritis. Expert Opin Pharmacother 20:1689–1702

    Article  CAS  PubMed  Google Scholar 

  • Lee PHU, Chung M, Ren Z, Mair DB, Kim DH (2022) Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 322:C567–C580

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S, Gallouzi IE (2017) STAT3 promotes IFNgamma/TNFalpha-induced muscle wasting in an NF-kappab-dependent and IL-6-independent manner. EMBO Mol Med 9:622–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10:507–515

    Article  CAS  PubMed  Google Scholar 

  • Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL et al (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670

    Article  CAS  PubMed  Google Scholar 

  • Peladeau C, Adam NJ, Jasmin BJ (2018) Celecoxib treatment improves muscle function in MDX mice and increases utrophin A expression. FASEB J 32:5090–5103

    Article  PubMed  Google Scholar 

  • Riley JS, Tait SW (2020) Mitochondrial DNA in inflammation and immunity. EMBO Rep 21:e49799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rom O, Reznick AZ (2016) The role of e3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radical Biol Med 98:218–230

    Article  CAS  Google Scholar 

  • Romanello V, Sandri M (2010) Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 12:433–439

    Article  CAS  PubMed  Google Scholar 

  • Sartori R, Romanello V, Sandri M (2021) Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 12:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Zhang R, Xu L, Wan Q, Zhu J, Gu J, Huang Z, Ma W, Shen M, Ding F et al (2019a) Microarray analysis of gene expression provides new insights into denervation-induced skeletal muscle atrophy. Front Physiol 10:1298

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen S, Liao Q, Liu J, Pan R, Lee SM, Lin L (2019b) Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J Cachexia Sarcopenia Muscle 10:429–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Li M, Wang K, Qi G, Liu H, Wang W, Ji Y, Chang M, Deng C, Xu F et al (2022) Diabetic muscular atrophy: molecular mechanisms and promising therapies. Front Endocrinol 13:917113

    Article  Google Scholar 

  • Shimada N, Sakata A, Igarashi T, Takeuchi M, Nishimura S (2020) M1 macrophage infiltration exacerbate muscle/bone atrophy after peripheral nerve injury. BMC Musculoskelet Disord 21:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Yang H, Yang X, Chen X, Xu H, Shen Y, Ding F, Gu X, Zhu J, Sun H (2021) Global alternative splicing landscape of skeletal muscle atrophy induced by hindlimb unloading. Ann Transl Med 9:643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoma A, Lightfoot AP (2018) Nf-kb and inflammatory cytokine signalling: role in skeletal muscle atrophy. Adv Exp Med Biol 1088:267–279

    Article  CAS  PubMed  Google Scholar 

  • Wan Q, Zhang L, Huang Z, Zhang H, Gu J, Xu H, Yang X, Shen Y, Law BY, Zhu J et al (2020) Aspirin alleviates denervation-induced muscle atrophy via regulating the Sirt1/PGC-1α axis and STAT3 signaling. Ann Transl Med 8:1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Shen D, Zhang L, Ji Y, Xu L, Chen Z, Shen Y, Gong L, Zhang Q, Shen M et al (2022) SKP-SC-EVs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxidants 11:66

    Article  Google Scholar 

  • Wang K, Liu Q, Tang M, Qi G, Qiu C, Huang Y, Yu W, Wang W, Sun H, Ni X et al (2023) Chronic kidney disease-induced muscle atrophy: molecular mechanisms and promising therapies. Biochem Pharmacol 208:115407

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Narumiya S (2019) Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol 176:337–354

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G (2021) Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res 172:105807

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, Horng T (2014) Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA 111:15514–15519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li M, Wang W, Yu W, Liu H, Wang K, Chang M, Deng C, Ji Y, Shen Y et al (2022) Celecoxib alleviates denervation-induced muscle atrophy by suppressing inflammation and oxidative stress and improving microcirculation. Biochem Pharmacol 203:115186

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, Chen X, Yao X, Gu X, Qi L et al (2023) Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol 214:115664

    Article  CAS  PubMed  Google Scholar 

  • Zimmers TA, Fishel ML, Bonetto A (2016) Stat3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol 54:28–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 92068112, 82072160, 32130060, 81901933), the Major Natural Science Research Projects in Universities of Jiangsu Province (No. 20KJA310012), the Natural Science Foundation of Jiangsu Province (Nos. BK20202013, BK20201209), the “QingLan Project” in Jiangsu Universities, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program (Nos. JC22022037, MS22022010). Nantong university college students’ innovative training program (202310304119Y).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, X.Y., L.Q. and H.S.; data curation, Y.J., J.L., R.L., K.W. and M.C.; formal analysis, Y.J., R.L., J.L., B.L. and Z.G.; funding acquisition, Y.S. and H.S.; investigation, Y.J., J.L., R.L., K.W. and M.C.; project administration, X.Y. and H.S.; resources, H.S.; supervision, H.S.; writing—original draft, Y.J., J.L., R.L., K.W. and M.C.; writing—review and editing, Y.S., J.Z., X.Y., L.Q. and H.S. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xinlei Yao, Lei Qi or Hualin Sun.

Ethics declarations

Conflict of interest

The authors report that there are no conflicts of interest.

Ethics approval and consent to participate

All animal experiments were performed according to the animal care guidelines of Nantong University and were approved by the Jiangsu Provincial Laboratory Animal Management Committee (No. S20200312-003).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Lin, J., Liu, R. et al. Celecoxib attenuates hindlimb unloading-induced muscle atrophy via suppressing inflammation, oxidative stress and ER stress by inhibiting STAT3. Inflammopharmacol 32, 1633–1646 (2024). https://doi.org/10.1007/s10787-024-01454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-024-01454-7

Keywords

Navigation