Skip to main content

Advertisement

Log in

Meta-analysis of the anti-oxidative and anti-inflammatory effects of hypoglycaemic plant-derived medicines

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Background

The pivotal role of oxidative stress and inflammation in the pathophysiology of type 2 diabetes mellitus (T2DM) has been firmly established. However, the evidence concerning hypoglycaemic medicinal plants' antioxidant and anti-inflammatory effects remains inconclusive due to inconsistencies in prior studies. To address this gap, our study aims to perform a comprehensive systematic review and meta-analysis of randomized controlled trials (RCTs) to consolidate previous research findings in this field.

Methods

We conducted a comprehensive search in the PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases to identify relevant English randomized controlled trials (RCTs). Our study adhered to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. All eligible studies that evaluated concurrently the antioxidative and anti-inflammatory effects of hypoglycaemic plant-derived supplements on type 2 diabetes mellitus (T2DM) were included in the meta-analysis. The meta-analysis itself was carried out using both fixed and random effects models to synthesize the findings from the selected studies.

Results

Our study included 47 trials with a total of 2636 participants, both male and female, aged between 20 and 79 years, diagnosed with prediabetes, type 2 diabetes mellitus (T2DM), or metabolic syndrome. The meta-analysis revealed that plant-derived treatments, compared to placebos or other medicines, significantly improved oxidative stress (SMD = − 0.36, 95% CI − 0.64 to − 0.09), inflammation (SMD = − 0.47, 95% CI − 0.63 to − 0.31), total antioxidant capacity (SMD = 0.46, 95% CI 0.16–0.75), and antioxidant enzyme activity (SMD = 1.80, 95% CI 1.26–2.33). The meta-regression analysis showed that treatment duration exceeding 8 weeks significantly impacted the heterogeneity of the oxidative stress data.

Conclusions

Several hypoglycaemic plant-based treatments appear to positively affect T2DM patients by concurrently lowering oxidative stress and inflammatory indicators and boosting antioxidant enzyme activity.

Clinical Trail Registry

PROSPERO ID: CRD42021226147.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

Abbreviations

Akt:

Protein kinase B

CAT:

Catalase

CI:

Confidence interval

DBRCT:

Double-blind, randomized controlled trial

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

hs-CRP:

High-sensitivity C-reactive protein

IL-6:

Interleukin-6

MD:

Mean difference

MDA:

Malondialdehyde

NF-κB:

Nuclear factor kappa light chain-enhancer of activated B cells

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

PI3K:

Phosphatidyl inositol-3-kinase

PRISMA:

Preferred reporting items for systematic reviews and meta-analyses

PROSPERO:

International Prospective Register of Systematic Reviews

SD:

Standard deviation

SE:

Standard error

SIRT:

Sirtuin 3

SMD:

Standardized mean difference

SOD:

Superoxide dismutase

T2DM:

Type 2 diabetes mellitus

TAC:

Total antioxidant capacity

TNF-α:

Tumor necrosis factor-α

WHO:

World Health Organization

References

  • Adab Z, Eghtesadi S, Vafa MR et al (2019) Effect of turmeric on glycemic status, lipid profile, hs-CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients. Phytother Res 33(4):1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, AlLehaibi LH, AlSuwaidan HN et al (2021) Evaluation of clinical trials for natural products used in diabetes: an evidence-based systemic literature review. Medicine 100(16):e25641

    Article  PubMed  PubMed Central  Google Scholar 

  • Alnajjar M, Kumar Barik S, Bestwick C et al (2020) Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin. J Funct Foods 64:103597

    Article  CAS  Google Scholar 

  • Asadi A, Shidfar F, Safari M et al (2019) Efficacy of Melissa officinalis L. (lemon balm) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: a randomized, double-blind, clinical trial. Phytother Res 33(3):651–659

    Article  CAS  PubMed  Google Scholar 

  • Atkin M, Laight D, Cummings MH (2016) The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress, and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double-blind randomized placebo controlled trial. J Diabetes Complicat 30(4):723–727

    Article  Google Scholar 

  • Azimi P, Ghiasvand R, Feizi A et al (2014) Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev Diabet Stud 11(3–4):258–266

    Article  PubMed  Google Scholar 

  • Bailey CJ (2017) Metformin: historical overview. Diabetologia 60(9):1566–1576

    Article  CAS  PubMed  Google Scholar 

  • Bańkowski S, Petr M, Rozpara M et al (2022) Effect of 6-week curcumin supplementation on aerobic capacity, antioxidant status and sirtuin 3 level in middle-aged amateur long-distance runners. Redox Rep 27(1):186–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu A, Newman ED, Bryant AL et al (2013) Pomegranate polyphenols lower lipid peroxidation in adults with type 2 diabetes but have no effects in healthy volunteers: a pilot study. J Nutr Metab 2013:1

    Article  Google Scholar 

  • Bazyar H, Hosseini SA, Saradar S et al (2021) Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: a clinical trial. J Complementary Integr Med 18(2):405–411

    Article  CAS  Google Scholar 

  • Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NfκB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. J Parenter Enter Nutr 30(1):45–51

    Article  CAS  Google Scholar 

  • Chan JC, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P et al (2020) The lancet commission on diabetes: using data to transform diabetes care and patient lives. Lancet 396(10267):2019–2082

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Chu TTW, Choi SW, Benzie IFF, Tomlinson B (2021) Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother Res 35(6):3236–3245

    Article  CAS  PubMed  Google Scholar 

  • Chandra K, Jain V, Jabin A et al (2020) Effect of Cichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: a randomized, double-blind placebo study. Phytother Res 34(7):1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Dalli E, Colomer E, Tormos MC et al (2011) Crataegus laevigata decreases neutrophil elastase and has hypolipidemic effect: a randomized, double-blind, placebo-controlled trial. Phytomedicine 18(8–9):769–775

    Article  CAS  PubMed  Google Scholar 

  • Darmian MA, Hoseini R, Amiri E, Golshani S (2022) Downregulated hs-CRP and MAD, upregulated GSH and TAC, and improved metabolic status following combined exercise and turmeric supplementation: a clinical trial in middle-aged women with hyperlipidemic type 2 diabetes. J Diabetes Metab Disord 21(1):275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A (2016) Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 111:394–404

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi F, Sahebkar A, Aryaeian N et al (2019) Effects of saffron supplementation on inflammation and metabolic responses in type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes 12:2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimpour Koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M (2015) Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: a randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 22(2):290–296

    Article  CAS  PubMed  Google Scholar 

  • Fallahzadeh MK, Dormanesh B, Sagheb MM et al (2012) Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized, double-blind, placebo-controlled trial. Am J Kidney Dis 60(6):896–903

    Article  CAS  PubMed  Google Scholar 

  • Ghafouri A, Hajiluian G, Karegar SJ et al (2020) The effect of aqueous, ethanolic extracts of Rheum ribes on insulin sensitivity, inflammation, oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. J Herbal Med 24:100389

    Article  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorabi AM, Razi B, Aslani S et al (2021) Effect of curcumin on proinflammatory cytokines: a meta-analysis of randomized controlled trials. Cytokine 143:155541

    Article  CAS  PubMed  Google Scholar 

  • Grabež M, Škrbić R, Stojiljković MP et al (2022) A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus. Rev Cardiovasc Med 23(2):57

    Article  PubMed  Google Scholar 

  • Hadi S, Mirmiran P, Daryabeygi-Khotbesara R, Hadi V (2018) Effect of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress among people with type 2 diabetes mellitus: a randomized, double-blind, placebo controlled trial. Prog Nutr 20:127–133

    Google Scholar 

  • Haidari F, Zakerkish M, Borazjani F, Ahmadi Angali K, Amoochi Foroushani G (2020) The effects of Anethum graveolens (dill) powder supplementation on clinical and metabolic status in patients with type 2 diabetes. Trials. https://doi.org/10.1186/s13063-020-04401-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmatabadi M, Abdollahi M, Bakhshayeshi S et al (2009) Benefits of Semelil (ANGIPARS™) on oxidant-antioxidant balance in diabetic patients; a randomized, double-blind placebo controlled clinical trial. Daru 17(SUPPL. 1):50–55

    Google Scholar 

  • Higgins JP, Altman DG, Gøtzsche PC et al (2011) The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins JP, Thomas J, Chandler J et al (2019) Cochrane handbook for systematic reviews of interventions, 2nd edn. John Wiley & Sons, Chichester (UK)

    Book  Google Scholar 

  • Howick J, Chalmers I, Glasziou P, et al (2022) OCEBM Levels of Evidence Working Group. The Oxford 2011 levels of evidence. Oxford Centre for Evidence-Based Medicine Available at: http://www.cebmnet/indexaspx?o=5653. accessed: 2022. 2011

  • Ioannidis JP (2008) Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract 14(5):951–957

    Article  PubMed  Google Scholar 

  • Javid AZ, Bazyar H, Gholinezhad H et al (2019) The effects of ginger supplementation on inflammatory, antioxidant, and periodontal parameters in type 2 diabetes mellitus patients with chronic periodontitis under non-surgical periodontal therapy. A double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes Targets Ther 12:1751–1761

    Article  CAS  Google Scholar 

  • Kanellos PT, Kaliora AC, Tentolouris NK et al (2014) A pilot, randomized controlled trial to examine the health outcomes of raisin consumption in patients with diabetes. Nutrition 30(3):358–364

    Article  CAS  PubMed  Google Scholar 

  • Kar P, Laight D, Rooprai HK, Shaw KM, Cummings M (2009) Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: a double-blind randomized placebo-controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med 26(5):526–531

    Article  CAS  PubMed  Google Scholar 

  • Kazemi S, Yaghooblou F, Siassi F et al (2017) Cardamom supplementation improves inflammatory and oxidative stress biomarkers in hyperlipidemic, overweight, and obese pre-diabetic women: a randomized double-blind clinical trial. J Sci Food Agric 97(15):5296–5301

    Article  CAS  PubMed  Google Scholar 

  • Kempf K, Herder C, Erlund I et al (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 91(4):950–957

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Yoon KH, Kang MJ et al (2012) A six-month supplementation of mulberry, Korean red ginseng, and Banaba decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes. Evid Based Complement Alternat Med 2012:735191

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Simbo SY, Fang C et al (2018) Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct 9(6):3097–3103

    Article  CAS  PubMed  Google Scholar 

  • Kooshki A, Tofighiyan T, Rastgoo N, Rakhshani MH, Miri M (2020) Effect of Nigella sativa oil supplement on risk factors for cardiovascular diseases in patients with type 2 diabetes mellitus. Phytother Res 34(10):2706–2711

    Article  CAS  PubMed  Google Scholar 

  • Legiawati L, Bramono K, Indriatmi W et al (2020) Oral and topical Centella asiatica in type 2 diabetes mellitus patients with dry skin: a three-arm prospective randomized double-blind controlled trial. Evid Based Complement Alternat Med 2020:1

    Article  Google Scholar 

  • Maithili Karpaga Selvi N, Sridhar MG, Swaminathan RP, Sripradha R (2015) Efficacy of turmeric as adjuvant therapy in type 2 diabetic patients. Indian J Clin Biochem 30(2):180–186

    Article  CAS  PubMed  Google Scholar 

  • Mao Q-Q, Xu X-Y, Cao S-Y et al (2019) Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8(6):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad A, Falahi E, Yusof B-NM et al (2021) The effects of the ginger supplements on inflammatory parameters in type 2 diabetes patients: a systematic review and meta-analysis of randomised controlled trials. Clin Nutr ESPEN 46:66–72

    Article  PubMed  Google Scholar 

  • Musolino V, Gliozzi M, Bombardelli E et al (2020) The synergistic effect of Citrus bergamia and Cynara cardunculus extracts on vascular inflammation and oxidative stress in non-alcoholic fatty liver disease. J Tradit Complement Med 10(3):268–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair AR, Mariappan N, Stull AJ, Francis J (2017) Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct 8(11):4118–4128

    Article  CAS  PubMed  Google Scholar 

  • Neyestani TR, Shariatzade N, Kalayi A et al (2010) Regular daily intake of black tea improves oxidative stress biomarkers and decreases serum C-reactive protein levels in type 2 diabetic patients. Ann Nutr Metab 57(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Nieto G (2020) How are medicinal plants useful when added to foods? Medicines (Basel) 7:58. https://doi.org/10.3390/medicines7090058

    Article  PubMed  Google Scholar 

  • Nigam V, Nambiar VS (2019) Aegle marmelos leaf juice as a complementary therapy to control type 2 diabetes—randomised controlled trial in Gujarat. India Adv Integr Med 6(1):11–22

    Article  Google Scholar 

  • Oremus M, Wolfson C, Perrault A, Demers L, Momoli F, Moride Y (2001) Interrater reliability of the modified Jadad quality scale for systematic reviews of Alzheimer’s disease drug trials. Dement Geriatr Cogn Disord 12(3):232–236

    Article  CAS  PubMed  Google Scholar 

  • Organization WH (2013) WHO traditional medicine strategy: 2014–2023: World Health Organization

  • Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10(1):1–11

    Article  Google Scholar 

  • Park K, Kim Y, Kim J et al (2020) Supplementation with Korean red ginseng improves current perception threshold in Korean type 2 diabetes patients: a randomized, double-blind placebo-controlled trial. J Diabetes Res 2020:5295328

    Article  PubMed  PubMed Central  Google Scholar 

  • Pingali U, Ali MA, Gundagani S, Nutalapati C (2020a) Evaluation of the effect of an aqueous extract of Azadirachta indica (Neem) leaves and twigs on glycemic control, endothelial dysfunction and systemic inflammation in subjects with type 2 diabetes mellitus—a randomized, double-blind, placebo-controlled clinical study. Diabetes Metab Syndr Obes 13:4401–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pingali U, Sukumaran D, Nutalapati C (2020b) Effect of an aqueous extract of Terminalia chebula on endothelial dysfunction, systemic inflammation, and lipid profile in type 2 diabetes mellitus: a randomized double-blind, placebo-controlled clinical study. Phytother Res 34(12):3226–3235

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs-Johnson K, Johnston CS, Sweazea KL (2017) Ground flaxseed increased nitric oxide levels in adults with type 2 diabetes: a randomized comparative effectiveness study of supplemental flaxseed and psyllium fiber. Obes Med 5:16–24

    Article  Google Scholar 

  • Sakhaei R, Nadjarzadeh A, Esmaeili A et al (2021) Cardiovascular and renal effects of Hibiscus sabdariffa Linnaeus. In patients with diabetic nephropathy: a randomized, double-blind, controlled trial. J Nutr Food Secur 6(2):116–26

    Google Scholar 

  • Sanaei M, Ebrahimi M, Banazadeh Z et al (2015) Consequences of Aphanizomenon flos-aquae (AFA) extract (Stemtech(TM)) on metabolic profile of patients with type 2 diabetes. J Diabetes Metab Disord. https://doi.org/10.1186/s40200-015-0177-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahbazian H, Aleali AM, Amani R et al (2019) Effects of saffron on homocysteine, and antioxidant and inflammatory biomarkers levels in patients with type 2 diabetes mellitus: a randomized double-blind clinical trial. Avic J Phytomed 9(5):436–445

    CAS  Google Scholar 

  • Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S (2015) The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complementary Integr Med 12(2):165–170

    Article  CAS  Google Scholar 

  • Smitha Grace S, Chandran G, Chauhan JB (2019) Terpenoids: an activator of “fuel-sensing enzyme AMPK” with special emphasis on antidiabetic activity. Plant Hum Health 2:227–244

    Article  Google Scholar 

  • Soleimani Z, Hashemdokht F, Bahmani F, Taghizadeh M, Memarzadeh MR, Asemi Z (2017) Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicat 31(9):1394–1400

    Article  Google Scholar 

  • Soltani D, Azizi B, Rahimi R, Talasaz A, Rezaeizadeh H, Vasheghani-Farahani A (2022) Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: a comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 9:990063. https://doi.org/10.3389/fcvm.2022.990063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somanah J, Aruoma OI, Gunness TK et al (2012) Effects of a short-term supplementation of a fermented papaya preparation on biomarkers of diabetes mellitus in a randomized Mauritian population. Prev Med 54(Suppl):S90–S97

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Zhao C, Guven EC et al (2020) Dietary polyphenols as antidiabetic agents: advances and opportunities. Food Frontiers 1(1):18–44

    Article  Google Scholar 

  • Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  • Taghizadeh M, Soleimani A, Bahmani F et al (2017) Metabolic response to mulberry extract supplementation in patients with diabetic nephropathy: a randomized controlled trial. Iran J Kidney Dis 11(6):438–446

    PubMed  Google Scholar 

  • Tavakoly R, Maracy MR, Karimifar M et al (2018) Does fenugreek (Trigonella foenum-graecum) seed improve inflammation, and oxidative stress in patients with type 2 diabetes mellitus? A parallel group randomized clinical trial. Eur J Integr Med 18:13–17

    Article  Google Scholar 

  • Thomford NE, Senthebane DA, Rowe A et al (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6):1578

    Article  PubMed  PubMed Central  Google Scholar 

  • Usharani P, Fatima N, Muralidhar N (2013) Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab Syndr Obes 6:275–284

    PubMed  PubMed Central  Google Scholar 

  • Usharani P, Kishan PV, Fatima N, Uday KC (2014) A comparative study to evaluate the effect of highly standardised aqueous extracts of Phyllanthus emblica, Withania somnifera and their combination on endothelial dysfunction and biomarkers in patients with type II diabetes mellitus. Int J Pharm Sci Res 5(7):2687–2697

    Google Scholar 

  • Vassalle C, Gaggini M (2022) Type 2 diabetes and oxidative stress and inflammation: pathophysiological mechanisms and possible therapeutic options. Antioxidants (Basel) 11(5):953. https://doi.org/10.3390/antiox11050953

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Ma Q, Cui H et al (2017) How can synergism of traditional medicines benefit from network pharmacology? Molecules 22(7):1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42

    Article  Google Scholar 

Download references

Acknowledgements

All authors thank Endocrinology and Metabolism Clinical Sciences Institute for its financial support. It should be noted that the institute had no role in any part of the study, writing of the manuscript, or the decision to submit.

Funding

This work was supported by the Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran [Grant IDs 1399-01-97-991].

Author information

Authors and Affiliations

Authors

Contributions

OT-M: supervision, data curation, methodology, validation, writing, reviewing, and editing; BA and SM: methodology, data curation, writing—original draft preparation; FE: methodology, data curation, reviewing and editing; MQ: methodology, validation, reviewing and editing; MK, EN, ZN: data curation, reviewing, and editing.

Corresponding author

Correspondence to Ozra Tabatabaei-Malazy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Neither ethics approval nor participant consent was required, as this study was based solely on the summary results of previously published articles. Individual patient data were not obtained or accessed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Table S1. Search strategy in PubMed web database (DOCX 15 KB)

10787_2023_1315_MOESM2_ESM.docx

Supplementary file2 Table S2. Subgroup analyses for the effects of herbal medicines on the primary and secondary outcomes (DOCX 16 KB)

Supplementary file3 Fig. S1 Forest plot of total antioxidant capacity in the random effect meta-analysis (DOCX 107 KB)

10787_2023_1315_MOESM4_ESM.docx

Supplementary file4 Fig. S2 Forest plot of antioxidative enzymes’ activity in the random effect meta-analysis (DOCX 97 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, B., Mohseni, S., Tabatabaei-Malazy, O. et al. Meta-analysis of the anti-oxidative and anti-inflammatory effects of hypoglycaemic plant-derived medicines. Inflammopharmacol 31, 2521–2539 (2023). https://doi.org/10.1007/s10787-023-01315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01315-9

Keywords

Navigation