Skip to main content

Advertisement

Log in

Chrysophanol exerts a protective effect against Aβ25-35-induced Alzheimer’s disease model through regulating the ROS/TXNIP/NLRP3 pathway

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

A Correction to this article was published on 18 January 2024

This article has been updated

Abstract

Background

The primary pathogenic factors of Alzheimer’s disease (AD) have been identified as oxidative stress, inflammatory damage, and apoptosis. Chrysophanol (CHR) has a good neuroprotective effect on AD, however, the potential mechanism of CHR remains unclear.

Purpose

In this study, we focused on the ROS/TXNIP/NLRP3 pathway to determine whether CHR regulates oxidative stress and neuroinflammation.

Methods

d-galactose and Aβ25-35 combination were used to build an in vivo model of AD, and the Y-maze test was used to evaluate the learning and memory function of rats. Morphological changes of neurons in the rat hippocampus were observed using hematoxylin and eosin (HE) staining. AD cell model was established by Aβ25-35 in PC12 cells. The DCFH-DA test identified reactive oxygen species (ROS). The apoptosis rate was determined using Hoechst33258 and flow cytometry. In addition, the levels of MDA, LDH, T-SOD, CAT, and GSH in serum, cell, and cell culture supernatant were detected by colorimetric method. The protein and mRNA expressions of the targets were detected by Western blot and RT-PCR. Finally, molecular docking was used to further verify the in vivo and in vitro experimental results.

Results

CHR could significantly improve learning and memory impairment, reduce hippocampal neuron damage, and reduce ROS production and apoptosis in AD rats. CHR could improve the survival rate, and reduce the oxidative stress and apoptosis in the AD cell model. Moreover, CHR significantly decreased the levels of MDA and LDH, and increased the activities of T-SOD, CAT, and GSH in the AD model. Mechanically, CHR significantly reduced the protein and mRNA expression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18, and increase TRX.

Conclusions

CHR exerts neuroprotective effects on the Aβ25-35-induced AD model mainly by reducing oxidative stress and neuroinflammation, and the mechanism may be related to ROS/TXNIP/NLRP3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Change history

References

  • Ashrafian H, Zadeh EH, Khan RH (2021) Review on Alzheimer’s disease: inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 167:382–394

    Article  CAS  PubMed  Google Scholar 

  • Bharti V, Tan H, Zhou H, Wang JF (2019) Txnip mediates glucocorticoid-activated NLRP3 inflammatory signaling in mouse microglia. Neurochem Int 131:104564

    Article  CAS  PubMed  Google Scholar 

  • Cai B, Ye S, Wang Y, Hua RP, Wang TT, Lix LJ, Jiang AJ, Shen GM (2018) Protective effects of genistein on Aβ25-35-induced PC12 cell injury via regulating CaM-CaMKIV signaling pathway. Zhongguo Zhong Yao Za Zhi 43:571–576

    PubMed  Google Scholar 

  • Chae U, Min JS, Lee H, Song KS, Lee HS, Lee HJ, Lee SR, Lee DS (2017a) Chrysophanol suppresses pro-inflammatory response in microglia via regulation of Drp1-dependent mitochondrial fission. Immunopharmacol Immunotoxicol 39:268–275

    Article  CAS  PubMed  Google Scholar 

  • Chae U, Min JS, Leem HH, Lee HS, Lee HJ, Lee SR, Lee DS (2017b) Chrysophanol suppressed glutamate-induced hippocampal neuronal cell death via regulation of dynamin-related protein 1-dependent mitochondrial fission. Pharmacology 100:153–160

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, He H, Luo S, Xiong L, Li P (2014) A novel GC-MS method for determination of chrysophanol in rat plasma and tissues: Application to the pharmacokinetics, tissue distribution and plasma protein binding studies. J Chromatogr B Analyt Technol Biomed Life Sci 973c:76–83

    Article  PubMed  Google Scholar 

  • Chen J, Chen J, Cheng Y, Fu Y, Zhao H, Tang M, Zhao H, Lin N, Shi X, Lei Y, Wang S, Huang L, Wu W, Tan J (2020) Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 11:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui WH, Zhang HH, Qu ZM, Wang Z, Zhang DJ, Wang S (2022) Effects of chrysophanol on hippocampal damage and mitochondrial autophagy in mice with cerebral ischemia reperfusion. Int J Neurosci 132:613–620

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Zhu L, Ma S, Liu J, Zhang M, Li J, Luo Y, Zhou X, Chen Q, Wang L, Huang Y, Chen Y (2022) Berberine alleviates NLRP3 inflammasome induced endothelial junction dysfunction through Ca2+ signaling in inflammatory vascular injury. Phytomedicine 101:154131

    Article  CAS  PubMed  Google Scholar 

  • Domingues A, Jolibois J, Marquet de Rougé P, Nivet-Antoine V (2021) The emerging role of TXNIP in ischemic and cardiovascular diseases; a novel marker and therapeutic target. Int J Mol Sci 22:1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Wang Y, Tu Y, Guo Y, Sun X, Xu X, Liu X, Wang L, Qin X, Zhu M, Song E (2020) A prodrug of epigallocatechin-3-gallate alleviates high glucose-induced pro-angiogenic factor production by inhibiting the ROS/TXNIP/NLRP3 inflammasome axis in retinal Müller cells. Exp Eye Res 196:108065

    Article  CAS  PubMed  Google Scholar 

  • Gao J, He H, Jiang W, Chang X, Zhu L, Luo F, Zhou R, Ma C, Yan T (2015) Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease. Behav Brain Res 293:27–33

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Wang Y, Yu S, Cao X, Chen Y, Cheng Q, Ding F (2021) Anti-inflammatory activity of a polypeptide fraction from achyranthes bidentate in Amyloid β oligomers induced model of Alzheimer’s disease. Front Pharmacol 12:716177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M, Zhou Y, Liao N, Wei Q, Bai Z, Bao N, Zhu Y, Zhang H, Gao L, Cheng X (2022) Chrysophanol, a main anthraquinone from Rheum palmatum L. (rhubarb), protects against renal fibrosis by suppressing NKD2/NF-κB pathway. Phytomedicine 105:154381

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Xu X, Tang C, Gao P, Chen X, Xiong X, Yang M, Yang S, Zhu X, Yuan S, Liu F, Xiao L, Kanwar YS, Sun L (2018) Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol 16:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insel PS, Donohue MC, Berron D, Hansson O, Mattsson-Carlgren N (2021) Time between milestone events in the Alzheimer’s disease amyloid cascade. Neuroimage 227:117676

    Article  CAS  PubMed  Google Scholar 

  • Ismael S, Wajidunnisam, Sakata K, McDonald MP, Liao FF, Ishrat T (2021) ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer’s disease. Neurochem Int 148:105104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismael S, Patrick D, Salman M, Parveen A, Stanfill AG, Ishrat T (2022) Verapamil inhibits TXNIP-NLRP3 inflammasome activation and preserves functional recovery after intracerebral hemorrhage in mice. Neurochem Int 161:105423

    Article  CAS  PubMed  Google Scholar 

  • Ju Y, Tam KY (2022) Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen Res 17:543–549

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Si L, Rao J, Li D, Wu Y, Wu S, Wu M, He S, Zhu W, Wu Y, Xu J, Li G, Huang J (2017) Polygoni multiflori radix derived anthraquinones alter bile acid disposition in sandwich-cultured rat hepatocytes. Toxicol in Vitro 40:313–323

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Li R, Dai P, Li Z, Li Y, Li C (2019) Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environ Pollut 251:689–698

    Article  CAS  PubMed  Google Scholar 

  • Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Barve KH, Kumar MS (2020) Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr Neuropharmacol 18:1106–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koka S, Xia M, Chen Y, Bhat OM, Yuan X, Boini KM, Li PL (2017) Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia. Redox Biol 13:336–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahooti B, Chhibber T, Bagchi S, Varahachalam SP, Jayant RD (2021) Therapeutic role of inflammasome inhibitors in neurodegenerative disorders. Brain Behav Immun 91:771–783

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chu S, Liu Y, Chen N (2019) Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid Based Complement Alternat Med 2019:3790728

    PubMed  PubMed Central  Google Scholar 

  • Li N, Zhao T, Cao Y, Zhang H, Peng L, Wang Y, Zhou X, Wang Q, Li J, Yan M, Dong X, Zhao H, Li P (2020a) Tangshen formula attenuates diabetic kidney injury by imparting anti-pyroptotic effects via the TXNIP-NLRP3-GSDMD axis. Front Pharmacol 11:623489

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Tuo X, Li B, Deng Z, Qiu Y, Xie H (2020b) Semaglutide attenuates excessive exercise-induced myocardial injury through inhibiting oxidative stress and inflammation in rats. Life Sci 250:117531

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cheng Y, Qin Y, Gao H, Wang G, Song H, Wang Y, Cai B (2022a) Chrysophanol exerts neuroprotective effects via interfering with endoplasmic reticulum stress apoptotic pathways in cell and animal models of Alzheimer’s disease. J Pharm Pharmacol 74:32–40

    Article  PubMed  Google Scholar 

  • Li Z, Liu T, Feng Y, Tong Y, Jia Y, Wang C, Cui R, Qu K, Liu C, Zhang J (2022b) PPARγ alleviates sepsis-induced liver injury by inhibiting hepatocyte pyroptosis via inhibition of the ROS/TXNIP/NLRP3 signaling pathway. Oxid Med Cell Longev 2022:1269747

    PubMed  PubMed Central  Google Scholar 

  • Lian D, Dai L, Xie Z, Zhou X, Liu X, Zhang Y, Huang Y, Chen Y (2018) Periodontal ligament fibroblasts migration injury via ROS/TXNIP/Nlrp3 inflammasome pathway with Porphyromonas gingivalis lipopolysaccharide. Mol Immunol 103:209–219

    Article  CAS  PubMed  Google Scholar 

  • Lim W, An Y, Yang C, Bazer FW, Song G (2018) Chrysophanol induces cell death and inhibits invasiveness via mitochondrial calcium overload in ovarian cancer cells. J Cell Biochem 119:10216–10227

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Zhang C, Chen X, Song E, Sun S, Chen M, Pan T, Deng X (2015) Chrysophanol affords neuroprotection against microglial activation and free radical-mediated oxidative damage in BV2 murine microglia. Int J Clin Exp Med 8:3447–3455

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Gu J, Qi J, Zeng XN, Ji J, Chen ZZ, Sun XL (2015) Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome. J Cell Mol Med 19:1949–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang X, Chen J, Song D, Zhang C, Chen R, Xu R, Jiang W, Li L (2022a) Chrysophanol facilitates long-term neurological recovery through limiting microglia-mediated neuroinflammation after ischemic stroke in mice. Int Immunopharmacol 112:109220

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shang W, Liu H, Hui H, Wu J, Zhang W, Gao P, Guo K, Guo Y, Tian J (2022b) Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer. J Nanobiotechnol 20:48

    Article  CAS  Google Scholar 

  • Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y (2022c) CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 50:W159-164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z (2018) Vitamin D(3) protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J Diabetes Res 2018:8193523

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez MA, Rodríguez JL, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Maximiliano JE, Anadón A, Ares I (2020) Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int 135:105414

    Article  PubMed  Google Scholar 

  • Melone MAB, Dato C, Paladino S, Coppola C, Trebini C, Giordana MT, Perrone L (2018) Verapamil inhibits Ser202/Thr205 phosphorylation of tau by blocking TXNIP/ROS/p38 MAPK pathway. Pharm Res 35:44

    Article  PubMed  Google Scholar 

  • Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, Bitto A, Crea G, Pisani A, Squadrito F, Trichilo V, Bruschetta D, Micali A, Altavilla D (2016) ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev 2016:2183026

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasoohi S, Ismael S, Ishrat T (2018) Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: regulation and implication. Mol Neurobiol 55:7900–7920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polekhina G, Ascher DB, Kok SF, Beckham S, Wilce M, Waltham M (2013) Structure of the N-terminal domain of human thioredoxin-interacting protein. Acta Crystallogr D Biol Crystallogr 69:333–344

    Article  CAS  PubMed  Google Scholar 

  • Popović N, Morales-Delgado N, Vidal Mena D, Alonso A, Pascual Martínez M, Caballero Bleda M, Popović M (2020) Verapamil and Alzheimer’s disease: past, present, and future. Front Pharmacol 11:562

    Article  PubMed  PubMed Central  Google Scholar 

  • Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY (2021) A review on advances of treatment modalities for Alzheimer’s disease. Life Sci 276:119129

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK (2019) Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol 174:53–89

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Hua L, Yeh CK, Shen L, Ying M, Zhang Z, Liu G, Li S, Chen S, Chen X, Yang X (2020) Ultrasound with microbubbles improves memory, ameliorates pathology and modulates hippocampal proteomic changes in a triple transgenic mouse model of Alzheimer’s disease. Theranostics 10:11794–11819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Jin Y, Liu F, Jiang J, Cao J, Lu Y, Yang J (2021) Ceramide induces the apoptosis of non-small cell lung cancer cells through the Txnip/Trx1 complex. Int J Mol Med 47:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreelakshmi V, Raj N, Abraham A (2017) Evaluation of the drug-like properties of kaempferol, chrysophanol and emodin and their interactions with EGFR tyrosine kinase—An in silico approach. Nat Prod Commun 12:915–920

    CAS  Google Scholar 

  • Srivastava S, Ahmad R, Khare SK (2021) Alzheimer’s disease and its treatment by different approaches: a review. Eur J Med Chem 216:113320

    Article  CAS  PubMed  Google Scholar 

  • Su S, Wu J, Gao Y, Luo Y, Yang D, Wang P (2020) The pharmacological properties of chrysophanol, the recent advances. Biomed Pharmacother 125:110002

    Article  CAS  PubMed  Google Scholar 

  • Sun XY, Li LJ, Dong QX, Zhu J, Huang YR, Hou SJ, Yu XL, Liu RT (2021) Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflamm 18:131

    Article  CAS  Google Scholar 

  • Tsubaki H, Tooyama I, Walker DG (2020) Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci 21:9357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cai B, Shao J, Wang TT, Cai RZ, Ma CJ, Han T, Du J (2016) Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer’s disease. Neural Regen Res 11:1153–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wu QH, Sui Y, Wang Y, Qiu X (2017) Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome. Biomed Pharmacother 86:32–40

    Article  CAS  PubMed  Google Scholar 

  • Wang DS, Yan LY, Yang DZ, Lyu Y, Fang LH, Wang SB, Du GH (2020) Formononetin ameliorates myocardial ischemia/reperfusion injury in rats by suppressing the ROS-TXNIP-NLRP3 pathway. Biochem Biophys Res Commun 525:759–766

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Gao Z, Zheng L, Zhang C, Liu Z, Yang Y, Teng H, Hou L, Yin Y, Zou X (2017) Protective effects of fucoidan on Aβ25-35 and d-Gal-induced neurotoxicity in PC12 cells and d-Gal-induced cognitive dysfunction in mice. Mar Drugs 15:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia P, Marjan M, Liu Z, Zhou W, Zhang Q, Cheng C, Zhao M, Tao Y, Wang Z, Ye Z (2022) Chrysophanol postconditioning attenuated cerebral ischemia-reperfusion injury induced NLRP3-related pyroptosis in a TRAF6-dependent manner. Exp Neurol 357:114197

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Tang H, Song J, Long J, Zhang L, Li X (2019) Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J Pharm Pharmacol 71:1475–1487

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Yu Y, Sang R, Li J, Ge B, Zhang X (2018) Protective effects of taraxasterol against ethanol-induced liver injury by regulating CYP2E1/Nrf2/HO-1 and NF-κB signaling pathways in mice. Oxid Med Cell Longev 2018:8284107

    Article  PubMed  PubMed Central  Google Scholar 

  • Xuan WT, Wang H, Zhou P, Ye T, Gao HW, Ye S, Wang JH, Chen ML, Song H, Wang Y, Cai B (2020) Berberine ameliorates rats model of combined Alzheimer’s disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress. 3 Biotech 10:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhi J, Leng H, Chen Y, Gao H, Ma J, Ji J, Hu Q (2021) The piperine derivative HJ105 inhibits Aβ(1–42)-induced neuroinflammation and oxidative damage via the Keap1-Nrf2-TXNIP axis. Phytomedicine 87:153571

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang D, Wu L, Zhang J, Wu D, Li X, Zhi F, Yang G, Kong X, Hong J, Zhao Y, Liu J, Shi Z, Ma X (2022) Electroacupuncture inhibits the corneal ROS/TXNIP/NLRP3 signaling pathway in a rat model of dry eye syndrome. Acupunct Med 40:78–88

    Article  PubMed  Google Scholar 

  • Ye X, Zuo D, Yu L, Zhang L, Tang J, Cui C, Bao L, Zan K, Zhang Z, Yang X, Chen H, Tang H, Zu J, Shi H, Cui G (2017) ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 485:499–505

    Article  CAS  PubMed  Google Scholar 

  • Ye S, Cai B, Zhou P, Wang G, Gao H, Hua R, You L, Yao Y, Wang Y, Shen G (2020a) Huang-Pu-Tong-Qiao formula ameliorates tau phosphorylation by inhibiting the CaM-CaMKIV pathway. Evid Based Complement Alternat Med 2020:8956071

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye T, Gao HW, Xuan WT, Ye S, Zhou P, Li XQ, Wang Y, Song H, Liu YY, Cai B (2020b) The regulating mechanism of chrysophanol on protein level of CaM-CaMKIV to protect PC12 cells against Aβ(25–35)-induced damage. Drug Des Devel Ther 14:2715–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye T, Li X, Zhou P, Ye S, Gao H, Hua R, Ma J, Wang Y, Cai B (2020c) Chrysophanol improves memory ability of d-galactose and Aβ(25–35) treated rat correlating with inhibiting tau hyperphosphorylation and the CaM-CaMKIV signal pathway in hippocampus. 3 Biotech 10:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Fernandes Fraceto L, Dashora K, Gupta VK (2019) Chrysophanol: a natural anthraquinone with multifaceted biotherapeutic Potential. Biomolecules 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Guo Z, Wu N, Xu W, Han L, Li N, Han Y (2012) Two novel naphthalene glucosides and an anthraquinone isolated from Rumex dentatus and their antiproliferation activities in four cell lines. Molecules 17:843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang X, Liu X, Wang H, Xue J, Yu J, Kang N, Wang X (2014) Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice. Mediat Inflamm 2014:370530

    Article  Google Scholar 

  • Zhao Y, Zeng CY, Li XH, Yang TT, Kuang X, Du JR (2020) Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer’s disease. Aging Cell 19:e13239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Qiao D, Guan D, Wang K, Cui Y (2022) Chrysophanol ameliorates hemin-induced oxidative stress and endoplasmic reticulum stress by regulating microRNA-320-5p/Wnt3a pathway in HT22 cells. Oxid Med Cell Longev 2022:9399658

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Project of Overseas Visits for the Excellent Young Talents in Universities of Anhui Province in China (gxgwfx2020041); National Natural Science Foundation of China (81873351); Academic funding program for top talents in universities of Anhui Province (gxbjZD2022024).

Funding

The funding was provided by Key Project of Overseas Visits for the Excellent Young Talents in Universities of Anhui Province in China, gxgwfx2020041, Peng Zhou, National Natural Science Foundation of China, 81873351, Biao Cai, Academic funding program for top talents in universities of Anhui Province, gxbjZD2022024.

Author information

Authors and Affiliations

Authors

Contributions

MZ: Formal analysis, Validation, Writing-original draft. Z-xD: Formal analysis, Validation, Writing-original draft. WH: Formal analysis, Validation. JL: Formal analysis, Validation. SY: Formal analysis, Validation, Investigation. S-lH: Formal analysis, Validation, Investigation. PZ: Conceptualization, Methodology, Supervision, Visualization, Writing-review & editing. BC: Conceptualization, Methodology, Supervision, Visualization, Writing-review & editing. All data were generated in-house, and no paper mill was used. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding authors

Correspondence to Peng Zhou or Biao Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ding, Zx., Huang, W. et al. Chrysophanol exerts a protective effect against Aβ25-35-induced Alzheimer’s disease model through regulating the ROS/TXNIP/NLRP3 pathway. Inflammopharmacol 31, 1511–1527 (2023). https://doi.org/10.1007/s10787-023-01201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01201-4

Keywords

Navigation