Skip to main content
Log in

Phenolic rich Cocos nucifera inflorescence extract ameliorates inflammatory responses in LPS-stimulated RAW264.7 macrophages and toxin-induced murine models

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Anti-inflammatory and antinociceptive effects of the acetone extract of Cocos nucifera (CnAE), an important ingredient in several traditional drugs, have been studied using different in vitro and in vivo models. CnAE did not show any observable toxicity in RAW264.7 macrophages by MTT assay. The calorimetric analysis (total COX, 5-LOX, MPO, iNOS and NO), ELISA (IL-1β, IL-6, TNF-α and PGE2) and qRT-PCR (IL-1β, IL-6, TNF-α and NF-κB) were performed in LPS-induced RAW264.7 macrophages. Phosphorylation of NF-κBp65 and IκB was determined by western blotting. CnAE (100 µg/mL) remarkably inhibited total COX (68.67%) and 5-LOX (63.67%) activities, and subsequent release of iNOS, NO and PGE2 (p ≤ 0.05) in RAW264.7 cells treated with LPS. ELISA showed CnAE markedly decreased the level of pro-inflammatory cytokines IL-1β (p ≤ 0.001), IL-6 (p ≤ 0.001) and TNF-α (p ≤ 0.001) in LPS treated RAW264.7 cells. CnAE (100 µg/mL) also significantly down-regulated the mRNA expressions of pro-inflammatory cytokines (IL-1β, p ≤ 0.05; IL-6, p ≤ 0.01 and TNF-α, p ≤ 0.001) and NF-κB (p ≤ 0.001) against LPS-induction. Moreover, LPS-induced phosphorylation of IκB-α and NF-κB p65 was significantly inhibited by CnAE (100 µg/mL). In vivo anti-inflammatory studies showed that CnAE (400 mg/kg) significantly inhibited carrageenan-induced acute paw oedema (59.81%, p ≤ 0.001) and formalin-induced chronic paw oedema (52.90%, p ≤ 0.001) in mice. CnAE at a dose of 400 mg/kg also showed a significant anti-nociceptive effect on acetic acid-induced writhing (48.21%, p ≤ 0.001) and Eddy’s hot plate methods. These findings suggest that CnAE has significant anti-inflammatory and anti-nociceptive properties, mainly attributed to the inhibition of NF-κB/IκB signalling cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Figs. 4–8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CD14:

Cluster of differentiation 14

CnAE:

Cocos nucifera acetone extract

COX:

Cyclooxygenase

DCFDA:

2′,7′-Dichlorofluorescin diacetate

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

IL:

Interleukin

IкB:

Inhibitor kappa B

iNOS:

Inducible nitric oxide synthase

IRAK:

Interleukin receptor-associated kinase

LOX:

Lipoxygenase

LPS:

Lipopolysaccharide

MD2:

Myeloid differentiation 2

MPO:

Myeloperoxide

mRNA:

Messenger ribonucleic acid

MyD88:

Myeloid differentiation primary response 88

NF-кB:

Nuclear factor kappa B

NO:

Nitric oxide

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

OECD:

Organisation for economic co-operation and development

PCR:

Polymerase chain reaction

PGE2:

Prostaglandin 2

qRT:

Quantitative real time

SD:

Standard deviation

TLR4:

Toll-like receptor 4

TNF:

Tumor necrosis factor

TRAF6:

TNF receptor associated factor 6

UV:

Ultra violet

References

  • Ajith TA, Janardhanan KK (2001) Antioxidant and antiinflammatory activities of ethanol extract of Phellinus rimosus (Berk) Pilat. Indian J Expl Biol 39:1166–1169

    CAS  Google Scholar 

  • Akindele AJ, Adeyemi OO (2007) Antiinflammatory activity of the aqueous leaf extract of Byrsocarpus coccineus. Fitoterapia 78:25–28

    CAS  PubMed  Google Scholar 

  • Akira S (2003) Toll-like receptor signalling. J Biol Chem 278:38105–38108

    CAS  PubMed  Google Scholar 

  • Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Amran AA, Mahmud R (2011) Evaluation of the use of Cocos nucifera as antimalarial remedy in Malaysian folk medicine. J Ethnopharmacol 134:988–991

    PubMed  Google Scholar 

  • Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybeans. Methods Enzymol 71:441–451

    CAS  Google Scholar 

  • Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci Rep 6:24493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandary MJ, Chandrashekar KR, Kaveriappa KM (1995) Medical ethnobotany of the Siddis of Uttara Kannada district, Karnataka, India. J Ethnopharmacol 47:149–158

    CAS  PubMed  Google Scholar 

  • Bhatia M, He M, Zhang H, Moochhala S (2009) Sepsis as a model of SIRS. Front Biosci 14:4703–4711

    CAS  Google Scholar 

  • Bishayee K, Khuda-Bukhsh AR (2013) 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim Biophys Sin (Shanghai) 45:709–719

    CAS  Google Scholar 

  • Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43:645–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekharan NV, Simmons DL (2004) The cyclooxygenases. Genome Biol 5:241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Analaysis 10:178–182

    CAS  Google Scholar 

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218

    PubMed  Google Scholar 

  • Cheon BS, Kim YH, Son KS, Chang HW, Kang SS, Kim HP (2000) Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW264.7. Planta Med 66:596–600

    CAS  PubMed  Google Scholar 

  • Choi EM, Hwang JK (2004) Effects of methanolic extract and fractions from Litsea cubeba bark on the production of inflammatory mediators in RAW264.7 cells. Fitoterapia 75:141–148

    PubMed  Google Scholar 

  • Collier HO, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 32:295–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crunkhorn P, Meacock SC (1971) Mediators of the inflammation induced in the rat paw by carrageenin. Br J Pharmacol 42:392–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esquenazi D, Wigg MD, Miranda MM, Rodrigues HM, Tostes JB, Rozental S, da Silva AJ, Alviano CS (2002) Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract. Res Microbiol 153:647–652

    CAS  PubMed  Google Scholar 

  • Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis, 3rd edn. Chapman and Hall, London, p 302

    Google Scholar 

  • Hong J, Smith TJ, Ho CT, August DA, Yang CS (2001) Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem Pharmacol 62:1175–1183

    CAS  PubMed  Google Scholar 

  • Intayoung P, Limtrakul P, Yodkeeree S (2016) Antiinflammatory activities of crebanine by inhibition of NF-κB and AP-1 activation through suppressing MAPKs and Akt signaling in LPS-induced RAW264.7 Macrophages. Biol Pharm Bull 39:54–61

    CAS  PubMed  Google Scholar 

  • Khan H, Saeed M, Gilani AU, Khan MA, Dar A, Khan I (2010) The antinociceptive activity of Polygonatum verticillatum rhizomes in pain models. J Ethnopharmacol 127:521–527

    PubMed  Google Scholar 

  • Kim HD, Cho KH, Lee BW, Kwon YS, Lee HS, Choi SH, Ku SK (2010) Effects of magnetic infrared laser on formalin-induced chronic paw inflammation of mice. J Phys Ther Sci 22:395–404

    Google Scholar 

  • Kim GN, Kwon YI, Jang HD (2011) Protective mechanism of quercetin and rutin on 2,2′-azobis (2-amidinopropane) dihydrochloride or Cu2+-induced oxidative stress in HepG2 cells. Toxicol Vitro 25:138–144

    CAS  Google Scholar 

  • Koster R, Anderson M, De Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412–417

    Google Scholar 

  • Lachman J, Hamouz K, Orsák M, Pivec V (2000) Potato tubers as a significant source of antioxidants in human nutrition. Rostl Vyr 46:231–236

    CAS  Google Scholar 

  • Lau D, Baldus S (2006) Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther 111:16–26

    CAS  PubMed  Google Scholar 

  • Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 7:1291–1297

    CAS  PubMed  Google Scholar 

  • Lima EBC, Sousa CNS, Meneses LN, Ximenes NC, Santos MA Jr, Vasconcelos GS, Lima NBC, Patrocínio MCA, Macedo D, Vasconcelos SMM (2015) Cocos nucifera (L.) (Arecaceae): a phytochemical and pharmacological review. Braz J Med Biol Res 48:953–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loki AL, Rajamohan T (2003) Hepatoprotective and antioxidant effect of tender coconut water on carbon tetrachloride induced liver injury in rats. Indian J Biochem Biophys 40:354–357

    CAS  PubMed  Google Scholar 

  • Mendes RT, Stanczyk CP, Sordi R, Otuki MF, dos Santos FA, Fernandes D (2012) Selective inhibition of cyclooxygenase-2: risks and benefits. Rev Bras Reumatol 52:767–782

    PubMed  Google Scholar 

  • Meotti FC, Jameson GN, Turner R, Harwood DT, Stockwell S, Rees MD, Thomas SR, Kettle AJ (2011) Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J Biol Chem 286:12901–12911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngabire D, Seong YA, Patil MP, Niyonizigiye I, Seo YB, Kim GD (2018) Anti-Inflammatory effects of Aster incisus through the inhibition of NF-κB, MAPK, and Akt pathways in LPS-stimulated RAW264.7 macrophages. Mediat Inflamm. https://doi.org/10.1155/2018/4675204(Article ID 4675204)

    Article  Google Scholar 

  • Omata Y, Saito Y, Fujita K, Ogawa Y, Nishio K, Yoshida Y, Niki E (2008) Induction of adaptive response and enhancement of PC12 cell tolerance by lipopolysaccharide primarily through the upregulation of glutathione S-transferase A3 via Nrf2 activation. Free Radic Biol Med 45:1437–1445

    CAS  PubMed  Google Scholar 

  • Padumadasa C, Dharmadana D, Abeysekera A, Thammitiyagodage M (2016) In vitro antioxidant, anti-inflammatory and anticancer activities of ethyl acetate soluble proanthocyanidins of the inflorescence of Cocos nucifera L. BMC Complement Altern Med 16:345

    PubMed  PubMed Central  Google Scholar 

  • Pal D, Sarkar A, Gain S, Jana S, Mandal S (2011) CNS depressant activities of roots of Cocos nucifera in mice. Acta Pol Pharm 68:249–254

    PubMed  Google Scholar 

  • Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, Mizuno T, Suzumura A (2012) GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J Neuroinflamm 9:268

    CAS  Google Scholar 

  • Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173:3589–3593

    CAS  PubMed  Google Scholar 

  • Preetha PP, Girija Devi V, Rajamohan T (2013) Antihyperlipidemic effects of mature coconut water and its role in regulating lipid metabolism in alloxan-induced experimental diabetes. Comp Clin Pathol 23:1331–1337

    Google Scholar 

  • Pushpangadan P, Ijinu TP, George V (2015) Plant based anti-inflammatory secondary metabolites. Ann Phytomed 4:17–36

    CAS  Google Scholar 

  • Rajith NP, Navas M, Asha NL, Thaha MA, Vimal Kumar CS, Anish N, Rajasekharan S, George V, Pushpangadan P (2009) Ethnobotanical studies on coconut palm (Cocos nucifera L.) with special reference to south Kerala. Ethnobotany 21:32–40

    Google Scholar 

  • Renjith RS, Chikku AM, Rajamohan T (2013) Cytoprotective, antihyperglycemic and phytochemical properties of Cocos nucifera (L.) inflorescence. Asian Pac J Trop Med 6:804–810

    CAS  PubMed  Google Scholar 

  • Rinaldi S, Silva DO, Bello F, Alviano CS, Alviano DS, Matheus ME, Fernandes PD (2009) Characterization of the antinociceptive and anti-inflammatory activities from Cocos nucifera L. (Palmae). J Ethnopharmacol 122:541–546

    PubMed  Google Scholar 

  • Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, Hauschildt S (2011) LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 31:379–446

    CAS  PubMed  Google Scholar 

  • Ruiz PA, Haller D (2006) Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr 136:664–671

    CAS  PubMed  Google Scholar 

  • Salil G, Nevin KG, Rajamohan T (2001) Argenine rich coconut kernel protein modulates in alloxan treated rats. Chemico-Biol Interact 89:107–111

    Google Scholar 

  • Salter M, Knowles RG, Moncada S (1991) Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases. FEBS Lett 291:145–149

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  • Spector WG, Willoughby DA (1963) The inflammatory response. Bacteriol Rev 27:117–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan K, Muruganandan S, Lal J, Chandra S, Tandan SK, Raviprakash V (2003) Antinoniceptive and antipyretic activities of Pongamia pinnata leaves. Phytother Res 17:259–264

    CAS  PubMed  Google Scholar 

  • Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T (1983) Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 132:345–352

    CAS  PubMed  Google Scholar 

  • Talarico LB, Zibetti RG, Faria PC, Scolaro LA, Duarte ME, Noseda MD, Pujol CA, Damonte EB (2004) Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int J Biol Macromol 34:63–71

    CAS  PubMed  Google Scholar 

  • Tian B, Nowak D, Jamaluddin M, Wang S, Brasier A (2005) Identification of direct genomic targets downstream of the nuclear factor kappaB transcription factor mediating tumor necrosis factor signaling. J Biol Chem 280:17435–17448

    CAS  PubMed  Google Scholar 

  • Trease GE, Evans WC (2002) Pharmacognosy, 15th edn. Saunders Publishers, London, p 585

    Google Scholar 

  • Turner RA (1965) Analgesics. In: Turner RA (ed) Screening methods in pharmacology. Academic Press, London, p 100

    Google Scholar 

  • Ulrich-Merzenich G, Panek D, Zeitler H, Vetter H, Wagner H (2010) Drug development from natural products: exploiting synergistic effects. Indian J Exp Biol 48:208–219

    CAS  PubMed  Google Scholar 

  • Vaidyaratnam PS (1994) Indian medicinal plants, vol 2. Orient Longman Private Limited, Chennai

    Google Scholar 

  • Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther 166:96–103

    CAS  PubMed  Google Scholar 

  • Walker MC, Gierse JK (2010) In vitro assays for cyclooxygenase activity and inhibitor characterization. Methods Mol Biol 644:131–144

    CAS  PubMed  Google Scholar 

  • Whiteley PE, Dalrymple SA (1998) Models of inflammation: measuring gastrointestinal ulcerations in the rat. In: Enna SJ (ed) Current protocols in pharmacology, vol 3. Wiley, New York, pp 10.2.1–10.2.4

    Google Scholar 

  • Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44:275–295

    CAS  PubMed  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Ashok K. Chauhan, Founder President, Ritnand Balved Education Foundation (RBEF) and Amity Group of Institutions, and to Dr. Atul Chauhan, Chancellor, Amity University Uttar Pradesh (AUUP) for facilitating this work. Also we acknowledge our sincere gratitude to all those from AIPP, AUUP, Amala Cancer Research Centre, Thrissur, India and Biogenix Research Center, Thiruvananthapuram, India who extended their kind help and support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MAC, TPI, HK, RKS, VG, PP designed study; MAC, TPI performed research; TPI, MAC, HK, RKS, VG analyzed data; TPI, MAC, VG wrote the paper.

Corresponding author

Correspondence to Varughese George.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Institution. Experiments were conducted after getting the approval of the Institute’s Animal Ethics Committee (IAEC; Reg. No. 149/199/CPCSEA), Amala Cancer Research Centre, Thrissur, Kerala, India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chithra, M.A., Ijinu, T.P., Kharkwal, H. et al. Phenolic rich Cocos nucifera inflorescence extract ameliorates inflammatory responses in LPS-stimulated RAW264.7 macrophages and toxin-induced murine models. Inflammopharmacol 28, 1073–1089 (2020). https://doi.org/10.1007/s10787-019-00620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-019-00620-6

Keywords

Navigation