Skip to main content

Advertisement

Log in

PD123319, angiotensin II type II receptor antagonist, inhibits oxidative stress and inflammation in 2, 4-dinitrobenzene sulfonic acid-induced colitis in rat and ameliorates colonic contractility

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Angiotensin II, the main effector of renin angiotensin system, plays an important role in the inflammatory process and most of its effects are mediated through the AT1 receptor activation. However, the knowledge about the AT2 receptor involvement in this process is still evolving. We previously found that in an experimental model of colitis, AT2 receptor activation can contribute to the impairment of the muscle contractility in vitro in the course of inflammation. Here, we investigated the potential alleviating effects of the in vivo treatment of PD123319 (1-[[4-(Dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7- tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate), AT2 receptor antagonist, in 2,4-dinitrobenzene sulfonic acid (DNBS)-induced rat model of colitis. The effects of i.p PD123319 (0.3, 3 and 10 mg/kg) administration to rats subjected to intra-rectal DNBS instillation were investigated. The study revealed that the colon injury and the inflammatory signs were ameliorated by PD123319 when visualized by the histopathological examination. The colon shortening, myeloperoxidase activity, and colonic expression of IL-1β, IL-6 and iNOS were downregulated in a dose-dependent manner in DNBS-induced colitis rats treated with PD123319 and the anti-oxidant defense machinery was also improved. The mechanism of these beneficial effects was found in the ability of PD123319 to inhibit NF-κB activation induced by DNBS. The colonic contractility in inflamed tissues was also improved by PD123319 treatment. In conclusion, our data have demonstrated previously that undescribed proinflammatory effects for the AT2 receptors in DNBS-induced colitis in rats in which they are mediated likely by NF-κB activation and reactive oxygen species generation. Moreover, when the inflammatory process is mitigated by the AT2 receptor antagonist treatment, the smooth muscle is able to recover its functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akishita M, Horiuchi M, Yamada H, Zhang L, Shirakami G, Tamura K, Ouchi Y, Dzau VJ (2000) Inflammation influences vascular remodeling through AT2 receptor expression and signaling. Physiol Genomics 2:13–20

    CAS  PubMed  Google Scholar 

  • Altara R, Didion P, Booz GW (2016) Conflicting mechanisms of AT2 cardioprotection revealed. Cardiovasc Res 112(1):426–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Appleyard CB, Wallace JL (1995) Reactivation of hapten-induced colitis and its prevention by anti-inflammatory drugs. Am J Physiol 269:G119–G125

    CAS  PubMed  Google Scholar 

  • Arab HH, Al-Shorbagy MY, Abdallah DM, Nassar NN (2014) Telmisartan attenuates colon inflammation, oxidative perturbations and apoptosis in a rat model of experimental inflammatory bowel disease. PLoS One 9:e97193

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, Shakibaei M (2011) Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 286:28556–28566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carey RM (2017) Update on angiotensin AT2 receptors. Curr Opin Nephrol Hypertens 26:91–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conner EM, Brand SJ, Davis JM, Kang DY, Grisham MB (1996) Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease: toxins, mediators, and modulators of gene expression. Inflamm Bowel Dis 2:133–147

    CAS  PubMed  Google Scholar 

  • de Gasparo GM, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    CAS  PubMed  Google Scholar 

  • Esteban V, Ruperez M, Vita JR, Lopez ES, Mezzano S, Plaza JJ, Egido J, Ruiz-Ortega M (2003) Effect of simultaneous blockade of AT1 and AT2 receptors on the NFkappaB pathway and renal inflammatory response. Kidney Int 64(Suppl):S33–S38

    Google Scholar 

  • Esteban V, Lorenzo O, Ruperez M, Suzuki Y, Mezzano S, Blanco J, Kretzler M, Sugaya T, Egido J, Ruiz-Ortega M (2004) Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol 15:1514–1529

    CAS  PubMed  Google Scholar 

  • Ewert S, Spak E, Olbers T, Johnsson E, Edebo A, Fandriks L (2006) Angiotensin II induced contraction of rat and human small intestinal wall musculature in vitro. Acta Physiol (Oxf) 188:33–40

    CAS  Google Scholar 

  • Fandriks L (2011) The renin-angiotensin system and the gastrointestinal mucosa. Acta Physiol (Oxf) 201:157–167

    CAS  Google Scholar 

  • Fishlock DJ, Gunn A (1970) The action of angiotensin on the human colon in vitro. Br J Pharmacol 39:34–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi AV, Chipitsyna G, Relles D, Yeo CJ, Arafat HA (2017) Angiotensin II type 2 receptor: a novel modulator of inflammation in pancreatic ductal adenocarcinoma through regulation of NF-kB activity. J Cancer Tumor Int 5:1–11. https://doi.org/10.9734/JCTI/2017/31326

    Article  Google Scholar 

  • Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H (2002) Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem 50:275–282

    CAS  PubMed  Google Scholar 

  • Horiuchi M (2016) The protective arm of renin angiotensin system; recent research progress and expectation for new therapeutic approach. Nihon Rinsho 74:1583–1589

    PubMed  Google Scholar 

  • Hume GE, Radford-Smith GL (2008) ACE inhibitors and angiotensin II receptor antagonists in Crohn’s disease management. Expert Rev Gastroenterol Hepatol 2:645–651

    CAS  PubMed  Google Scholar 

  • Hunter MM, Wang A, Hirota CL, McKay DM (2005) Neutralizing anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J Immunol 174:7368–7375

    CAS  PubMed  Google Scholar 

  • Ikeda I, Kasajima T, Ishiyama S, Shimojo T, Takeo Y, Nishikawa T, Kameoka S, Hiroe M, Mitsunaga A (1997) Distribution of inducible nitric oxide synthase in ulcerative colitis. Am J Gastroenterol 92:1339–1341

    CAS  PubMed  Google Scholar 

  • Inokuchi Y, Morohashi T, Kawana I, Nagashima Y, Kihara M, Umemura S (2005) Amelioration of 2,4,6-trinitrobenzene sulphonic acid induced colitis in angiotensinogen gene knockout mice. Gut 54:349–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaszewski R, Tolia V, Ehrinpreis MN, Bodzin JH, Peleman RR, Korlipara R, Weinstock JV (1990) Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterology 98:1543–1548

    CAS  PubMed  Google Scholar 

  • Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Gosavi TP, Badole SL, Bodhankar SL (2012) Effect of hydroalcoholic extract of Hibiscus rosa sinensis Linn. leaves in experimental colitis in rats. Asian Pac J Trop Biomed 2:337–344

    PubMed  PubMed Central  Google Scholar 

  • Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PM, Thomas WG (2015) International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli (corrected). Pharmacol Rev 67:754–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katada K, Yoshida N, Suzuki T, Okuda T, Mizushima K, Takagi T, Ichikawa H, Naito Y, Cepinskas G, Yoshikawa T (2008) Dextran sulfate sodium-induced acute colonic inflammation in angiotensin II type 1a receptor deficient mice. Inflamm Res 57:84–91

    CAS  PubMed  Google Scholar 

  • Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    CAS  PubMed  Google Scholar 

  • Kimura H, Hokari R, Miura S, Shigematsu T, Hirokawa M, Akiba Y, Kurose I, Higuchi H, Fujimori H, Tsuzuki Y, Serizawa H, Ishiii H (1998) Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut 42:180–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klahr S, Morrissey JJ (2000) The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int 75(Suppl):S7–S14

    CAS  Google Scholar 

  • Kolios G, Rooney N, Murphy CT, Robertson DAF, Westwick J (1998) Expression of inducible nitric oxide synthase activity in human colon epithelial cells: modulation by T-lymphocyte derived cytokines. Gut 43:56–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651

    PubMed  PubMed Central  Google Scholar 

  • Liu T, Zhang L, Joo D, Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2:17023

    PubMed  PubMed Central  Google Scholar 

  • Mastropaolo M, Zizzo MG, Mule F, Serio R (2013) Angiotensin II contractile effects in mouse colon: role for pre- and post-junctional AT(1A) receptors. Acta Physiol (Oxf) 207:337–345

    CAS  Google Scholar 

  • Mastropaolo M, Zizzo MG, Auteri M, Caldara G, Liotta R, Mule F, Serio R (2015) Activation of angiotensin II type 1 receptors and contractile activity in human sigmoid colon in vitro. Acta Physiol (Oxf) 215:37–45

    CAS  Google Scholar 

  • Matavelli LC, Huang J, Siragy HM (2011) Angiotensin AT(2) receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension 57:308–313

    CAS  PubMed  Google Scholar 

  • Matsubara H (1998) Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83:1182–1191

    CAS  PubMed  Google Scholar 

  • Menk M, Graw JA, von Haefen HC, Steinkraus H, Lachmann B, Spies CD, Schwaiberger D (2018) Angiotensin II type 2 receptor agonist compound 21 attenuates pulmonary inflammation in a model of acute lung injury. J Inflamm Res 11:169–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton SJ, Shorthouse M, Hunter JO (1993) Relaxation of distal colonic circular smooth muscle by nitric oxide derived from human leukocytes. Gut 34:814–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima T, Sasaki M, Ando T, Wada T, Tanaka M, Okamoto Y, Ebi M, Hirata Y, Murakami K, Mizoshita T, Shimura T, Kubota E, Ogasawara N, Tanida S, Kataoka H, Kamiya T, Alexander JS, Joh T (2010) Blockage of angiotensin II type 1 receptor regulates TNF-alpha-induced MAdCAM-1 expression via inhibition of NF-kappaB translocation to the nucleus and ameliorates colitis. Am J Physiol Gastrointest Liver Physiol 298:G255–G266

    CAS  PubMed  Google Scholar 

  • Moreels TG, De Man JG et al (2001) Effect of Schistosoma mansoni-induced granulomatous inflammation on murine gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol 280:G1030–G1042

    CAS  PubMed  Google Scholar 

  • Munoz MC, Burghi V, Miquet JG, Cervino IA, Quiroga DT, Mazziotta L, Dominici FP (2017) Chronic blockade of the AT2 receptor with PD123319 impairs insulin signaling in C57BL/6 mice. Peptides 88:37–45

    CAS  PubMed  Google Scholar 

  • Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt RE, Dzau VJ (1995) The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92:10663–10667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T (2014) AT(2) receptor and tissue injury: therapeutic implications. Curr Hypertens Rep 16:416

    PubMed  PubMed Central  Google Scholar 

  • Ohshima H, Bartsch H (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305:253–264

    CAS  PubMed  Google Scholar 

  • Perez S, Talens-Visconti R, Rius-Perez S, Finamor I, Sastre J (2017) Redox signaling in the gastrointestinal tract. Free Radic Biol Med 104:75–103

    CAS  PubMed  Google Scholar 

  • Pulli B, Ali M, Forghani R, Schob S, Hsieh KL, Wojtkiewicz G, Linnoila JJ, Chen JW (2013) Measuring myeloperoxidase activity in biological samples. PLoS One 8:e67976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rachmilewitz D, Stamler JS, Karmeli F, Mullins ME, Singel DJ, Loscalzo J, Xavier RJ, Podolsky DK (1993) Peroxynitrite-induced rat colitis–a new model of colonic inflammation. Gastroenterology 105:1681–1688

    CAS  PubMed  Google Scholar 

  • Ribbons KA, Zhang X-J, Thompson JH et al (1995) Potential role of nitric oxide in a model of chronic colitis in rhesus macaques. Gastroenterology 108:705–711

    CAS  PubMed  Google Scholar 

  • Ruiz-Ortega M, Lorenzo O, Ruperez M, Suzuki Y, Egido J (2001) Angiotensin II activates nuclear transcription factor-kappaB in aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice. Nephrol Dial Transplant 16(Suppl 1):27–33

    CAS  PubMed  Google Scholar 

  • Ruiz-Ortega M, Esteban V, Suzuki Y, Ruperez M, Mezzano S, Ardiles L, Justo P, Ortiz A, Egido J (2003) Renal expression of angiotensin type 2 (AT2) receptors during kidney damage. Kidney Int 64:S21–S26

    Google Scholar 

  • Ruiz-Ortega M, Ruperez M, Esteban V, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2006) Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 21:16–20

    CAS  PubMed  Google Scholar 

  • Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105

    CAS  PubMed  Google Scholar 

  • Sasaki M, Bharwani S, Jordan P, Elrod JW, Grisham MB, Jackson TH, Lefer DJ, Alexander JS (2003) Increased disease activity in eNOS-deficient mice in experimental colitis. Free Radic Biol Med. 35(12):1679–1687

    CAS  PubMed  Google Scholar 

  • Shi Y, Liu T, He L, Dougherty U, Chen L, Adhikari S, Alpert L, Zhou G, Liu W, Wang J, Deb DK, Hart J, Liu SQ, Kwon J, Pekow J, Rubin DT, Zhao Q, Bissonnette M, Li YC (2016) Activation of the renin-angiotensin system promotes colitis development. Sci Rep 6:27552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verdonk K, Durik M, Abd-Alla N, Batenburg WW, van den Bogaerdt AJ, van VR, Roks AJ, Danser AH, van Esch JH (2012) Compound 21 induces vasorelaxation via an endothelium- and angiotensin II type 2 receptor-independent mechanism. Hypertension 60:722–729

    CAS  PubMed  Google Scholar 

  • Vallance BA, Dijkstra G, Qiu B, van der Waaij LA, vanGoor H, Jansen PLM, Collins SM (2004) Relative contributions of NOS isoforms during experimental colitis: endothelial-derived NOS maintains mucosal integrity. Am J Physiol Gastrointest Liver Physiol 287(4):G865–G874

    CAS  PubMed  Google Scholar 

  • Zizzo MG, Auteri M, Amato A, Caldara G, Nuzzo D, Di CM, Serio R (2017) Angiotensin II type II receptors and colonic dysmotility in 2,4-dinitrofluorobenzenesulfonic acid-induced colitis in rats. Neurogastroenterol Motil 29(6):e13019. https://doi.org/10.1111/nmo.13019

    Article  CAS  Google Scholar 

  • Zizzo MG, Caldara G, Bellanca A, Nuzzo D, Di CM, Serio R (2019) Preventive effects of guanosine on intestinal inflammation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Inflammopharmacology 27(2):349–359. https://doi.org/10.1007/s10787-018-0506-9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant (FFR 2012/2013) from the University of Palermo, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Zizzo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zizzo, M.G., Caldara, G., Bellanca, A. et al. PD123319, angiotensin II type II receptor antagonist, inhibits oxidative stress and inflammation in 2, 4-dinitrobenzene sulfonic acid-induced colitis in rat and ameliorates colonic contractility. Inflammopharmacol 28, 187–199 (2020). https://doi.org/10.1007/s10787-019-00619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-019-00619-z

Keywords

Navigation